

1/3.2-Inch 13 Mp CMOS Digital Image Sensor

AR1335HS Datasheet, Rev. 0

For the latest datasheet, please visit www.onsemi.com

Features

- High speed sensor supporting 13MP(4:3) at 30fps and 1080P up to 90fps
- Advanced 1.1 um pixel BSI technology
- Data interfaces: two-, three-, and four-lane serial mobile industry processor interface (MIPI)
- Bit-depth compression available for MIPI Interface: 10-8 and 10-6 to enable lower bandwidth receivers for full frame rate applications
- 3D synchronization controls to enable stereo video capture
- 6.8 kbits one-time programmable memory (OTPM) for storing shading correction coefficients and module information
- Programmable controls: gain, horizontal and vertical blanking, auto black level offset correction, frame size/rate, exposure, left-right and top-bottom image reversal, window size, and panning
- Two on-die phase-locked loop (PLL) oscillators for super low noise performance
- On-chip temperature sensor
- Bayer pattern horizontal down-size scaler
- Simple two-wire fast-mode+ serial interface
- Low dark current
- Interlaced multi-exposure readout enabling High Dynamic Range (HDR) still and video applications
- On-chip lens shading correction
- Support for external mechanical shutter
- Support for external LED or Xenon Flash
- Extended Flash duration up to start of frame readout

Applications

- Cellular phones
- Digital still cameras
- PC cameras
- PDAs
- Sports Action Camera
- Drone

Parameter		Value		
Optical format		1/3.2 -inch 13 Mp (4:3)		
Active pixels		4208H x 3120V		
Pixel size	2	1.1 μm Back Side Illuminated (BSI)		
Chief ray	/ angle (CRA)	11°		
Die size		6.3 mm x 5.7 mm		
Input clo	ock frequency	6 - 48 MHz		
Interface	2	4-lane MIPI (2- and 3-lane supported); Max data rate: 1.2Gbps/lane		
Subsampling modes (column and row)		skip2 bin2 skip3 bin3 skip4 bin4 skip2bin2		
ADC reso	olution	10 bits, on-die		
Analog g	gain	1x – 7.75x		
Digital g	ain	Up to 7.98x		
Scaler		Adjustable scaling up to 8x		
Tempera	ture sensor	10-bit, controlled by 2-wire serial I/F		
Compres	sion	DPCM: 10-8-10, 10-6-10		
3D supp	ort	Frame rate and exposure synchronization		
	VAA, VAA_PIX	2.6 - 2.9 V (2.7 V nominal)		
Supply	Vdd_IO, VddIO_ANA	1.7 - 1.9 V (1.8 V nominal)		
voltage	Vdd, Vdd_ANA, Vdd_PLL, Vdd_PHY	1.14 - 1.3 V (1.2 V nominal)		
Power co	onsumption	270mW at 60°C (TYP) at 13Mp 30 fps		
Responsivity		4700 e ⁻ /lux-sec		
SNRмах Dynamic Range		37 dB		
		69 dB		
Operating Temperature Range (at junction) - TJ		-30°C to +70°C		

Table 1:Key Performance Parameters

AR1335HS/D Rev. 0, 4/16 EN

1

©Semiconductor Components Industries, LLC 2016,

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Ordering Information

					Power Consumption
Mode	Resolution	Mode	HFOV	FPS	[mW]
		4:3 Snapshot Mode			
13 M full resolution	4208x3120	13M full mode	100%	30	270
13 M full resolution	4208x3120	13M full mode	100%	24	250
	16:9	Video Mode 30FPS ISP Scaling			
4K, 1080P, 720P	4000x2250	Cropping	95%	30	258
		16:9 Video Mode 30FPS			
4K UHD	3840 x 2160	Cropping	91%	30	230
4K Cinema	4096 x 2160	Cropping	91%	30	235
1080p	1920 x 1080	Crop+Subsampling+Scaling	91%	30	160
1080p LP	1920 x 1080	Crop+Subsampling+Scaling	91%	30	135
720p	1280 x 720	Crop+Subsampling+Scaling	91%	30	140
16:9 Video Mode 60FPS ISP Scaling					
1080p,720p	4000x1124	Crop+Subsampling	95%	60	255
16:9 Video Mode 60FPS					
1080p	1920 x 1080	Crop+Subsampling+Scaling	91%	60	160
1080p LP	1920 x 1080	Crop+Subsampling+Scaling	91%	60	135
720p	1280 x 720	Crop+Subsampling+Scaling	91%	60	140
16:9 Video Mode 90FPS ISP Scaling					
1080P	4000x1124	Crop+Subsampling	95%	90	320

Table 2:Mode of Operation and Power

Ordering Information

Table 3:Available Part Numbers

Part Number	Product Description	Orderable Product Attribute Description
AR1335HSSC11SMAA0-DPBR	CLCC Package	Dry Pack, Protective film, AR Glass
AR1335HSSC11SMAA0-DPBR-E	CLCC Package	Dry Pack, Protective film, AR Glass, Sample
AR1335HSSC11SMAA0-DRBR	CLCC Package	Dry Pack, Without Protective Film, AR Glass,
AR1335HSSC11SMAAH3-GEVB	CLCC Package	Demo Board

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Table of Contents

Table of Contents

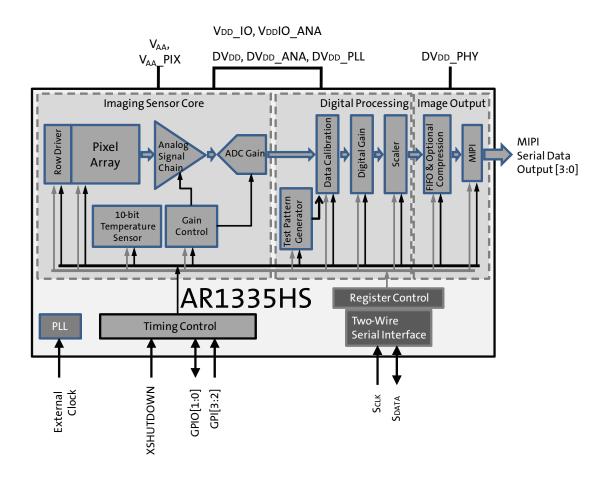
-

Features
Applications
Ordering Information
General Description
Functional Overview
Pixel Array
Operating Modes
Typical Connections7
Signal Descriptions
Output Data Format
Two-Wire Serial Register Interface
Registers
Reading the Sensor Revision Number
Programming Restrictions
Control of the Signal Interface
System States
Soft Reset Sequence
General Purpose Input and Output
Streaming/Standby Control
Clocking
Features
Additional Features
Multi-Camera Synchronization
Gain
Sensor Core Digital Data Path
Timing Specifications
Image Sensor Characteristics
Electrical Characteristics
Package Dimensions
Package Mechanical Drawing

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor General Description

General Description

The ON Semiconductor AR1335HS is a 1/3.2-inch BSI (back side illuminated) CMOS active-pixel digital image sensor with a pixel array of 4208H x 3120V (4224H x 3136V including border pixels). It incorporates sophisticated on-chip camera functions such as mirroring, column and row skip modes, and snapshot mode. It is programmable through a simple two-wire serial interface and has very low power consumption.


The AR1335HS digital image sensor features ON Semiconductor's breakthrough lownoise CMOS imaging technology that achieves near-CCD image quality (based on signal-to-noise ratio and low-light sensitivity) while maintaining the inherent size, cost, and integration advantages of CMOS.

The AR1335HS sensor can generate full resolution image at up to 30 frames per second (fps). An on-chip analog-to-digital converter (ADC) generates a 10-bit value for each pixel.

Functional Overview

The AR1335HS is a progressive-scan sensor that generates a stream of pixel data at a constant frame rate. It uses an on-chip, phase-locked loop (PLL) to generate all internal clocks from a single master input clock running between 6 and 48 MHz. The maximum data rate is 1.2 Gbps per lane. A block diagram of the sensor is shown in Figure 1.

Figure 1: Block Diagram

Advance

The core of the sensor is a 13Mp active-pixel array. The timing and control circuitry sequences through the rows of the array, resetting and then reading each row in turn. In the time interval between resetting a row and reading that row, the pixels in the row integrate incident light. The exposure is controlled by varying the time interval between reset and readout. Once a row has been read, the data from the columns is sequenced through an analog signal chain (providing offset correction and gain), and then through an ADC. The output from the ADC is a 10-bit value for each pixel in the array. The ADC output passes through a digital processing signal chain (which provides further data path corrections and applies digital gain).

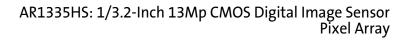
The pixel array contains optically active and light-shielded ("dark") pixels. The dark pixels are used to provide data for on-chip offset-correction algorithms ("black level" control).

The sensor contains a set of control and status registers that can be used to control many aspects of the sensor behavior including the frame size, exposure, and gain setting. These registers can be accessed through a two-wire serial interface.

The output from the sensor is a Bayer pattern; alternate rows are a sequence of either

green and red pixels or blue and green pixels. The offset and gain stages of the analog signal chain provide global per-color control of the pixel data.

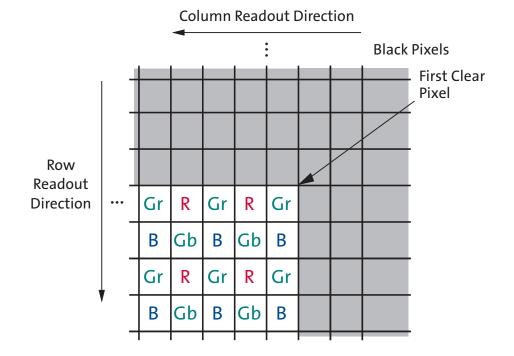
The control registers, timing and control, and digital processing functions shown in Figure 1 on page 4 are partitioned into three logical parts:


- A sensor core that provides array control and data path corrections. The output of the sensor core is a 10-bit serial pixel data stream qualified by a 4-lane MIPI output clock.
- Data processing functions, including a digital shading correction block to compensate for color/brightness shading introduced by the lens or chief ray angle (CRA) curve mismatch, digital gain, and dynamic defect correction
- Output processing functions, including a horizontal scaler, a limiter, a data compressor, an output FIFO, and a serializer.

The output FIFO is present to prevent data bursts by keeping the data rate continuous.

Programmable slew rates are also available to reduce the effect of electromagnetic interference from the output interface.

A flash output signal is provided to allow an external xenon or LED light source to synchronize with the sensor exposure time. Additional I/O signals support the provision of an external mechanical shutter.


ON Semiconductor Confidential and Proprietary

Pixel Array

The sensor core uses a Bayer color pattern, as shown in Figure 2. The even-numbered rows contain green and red pixels; odd-numbered rows contain blue and green pixels. Even-numbered columns contain green and blue pixels; odd-numbered columns contain red and green pixels.

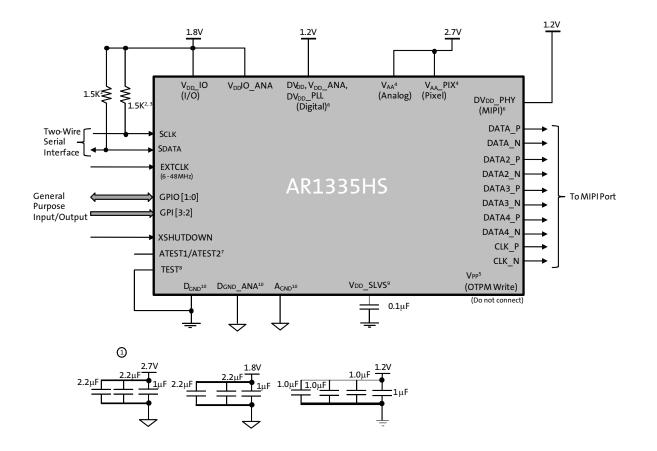
Figure 2: Pixel Color Pattern Detail (Top Right Corner)

Operating Modes

The AR1335HS supports MIPI serial output, which can be configured in 2-, 3-, and 4lanes. There is no parallel data output port. Typical configurations are shown in Figure 3 on page 7. These operating modes are described in "Control of the Signal Interface" on page 21.

For low-noise operation, the AR1335HS requires separate power supplies for analog and digital. Incoming digital and analog ground conductors can be tied together next to the die. Both power supply rails should be decoupled from ground using capacitors as close as possible to the die.

Caution


on ON Semiconductor does not recommend the use of inductance filters on the power supplies or output signals.

Typical Connections

Figure 3 shows the typical AR1335HS connections. The final decoupling cap recommendation is still under consideration.

Figure 3: Typical Connections

For connectivity above:

Notes: 1. All power supplies should be adequately decoupled; recommended minimum cap values are:

- 2.7 V: 2 x 2.2 μF and 1.0 μF
- 1.2 V: 4 x 1.0 μF
- 1.8 V: 2 x 2.2 μF and 1.0 μF
- 2. Resistor value 1.5 k Ω is recommended, but may be greater for slower two-wire speed.
- 3. This pull-up resistor is not required if the controller drives a valid logic level on SCLK at all times.
- 4. VAA and VAA PIX must be tied together.
- 5. Internal charge pump is used for OTPM programming.
- 6. Digital and MIPI supply can be tied together.
- 7. ATEST1/ATEST2 must be left floating.
- 8. TEST pin must be tied to DGND.
- 9. VDD_SLVS must be connected to DGND through a bypass cap (0.1 μ F).
- 10. Analog and digital ground domains can be combined in applications where limited routing resources would lead to inefficient layout and high ground trace impedance if split domains were used

Signal Descriptions

Table 4 provides signal descriptions for AR1335HS die. For pad location and aperture information, refer to the AR1335HS die data sheet

Table 4:Signal Descriptions

Name	Туре	Description	
EXTCLK	Input	Master clock input, 6-48 MHz	
XSHUTDOWN	Input	Asynchronous active LOW reset. This pin will turn off all power domains and is the lowest power state of the sensor. When asserted, data output stops and when de- asserted all internal registers are restored to their factory default settings.	
Sclk	Input	Serial clock for access to control and status registers	
GPI[3:2]	Input	General purpose inputs. After reset, these pads are powered-down by default; this means that it is not necessary to bond to these pads. These pads can be configured to provide hardware control of: GPI[2]:SADDR, Trigger signal for slave mode and standby. GPI[3]:3D daisy chain communication input and all options inGPI[2]. ON Semiconductor recommends that unused GPI pins be tied to DGND, but can also be left floating.	
GPIO[1:0]	I/O	General purpose inputs and outputs. After reset, these pads are not powered-down since its default use is as output. These padscan be configured toprovide hardware control of: GPIO[0]:Flashoutput(default),allinput options in GPI[2]. GPIO[1]: Shutter output (default), 3-D daisy chain communication output and all options in GPI[2]. ON Semiconductor recommends that unused GPIO pins be tied to DGND, but they can also be left floating	
TEST Input TEST must be tied to DGND for normal operation		TEST must be tied to DGND for normal operation	
Sdata	I/O	Serial data from reads and writes to control and status registers	
DATA_P	Output	Differential MIPI (sub-LVDS) serial data 1st lane (positive)	
DATA_N	Output	Differential MIPI (sub-LVDS) serial data 1st lane (negative)	
DATA2_P	Output	Differential MIPI (sub-LVDS) serial data 2nd lane (positive)	
DATA2_N	Output	Differential MIPI (sub-LVDS) serial data 2nd lane (negative)	
DATA3_P	Output	Differential MIPI (sub-LVDS) serial data 3rd lane (positive)	
DATA3_N	Output	Differential MIPI (sub-LVDS) serial data 3rd lane (negative)	
DATA4_P	Output	Differential MIPI (sub-LVDS) serial data 4th lane (positive)	
DATA4_N	Output	Differential MIPI (sub-LVDS) serial data 4th lane (negative)	
CLK_P	Output	Differential MIPI (sub-LVDS) serial clock/strobe (positive).	
CLK_N	Output	Differential MIPI (sub-LVDS) serial clock/strobe (negative)	
VPP	Supply	Do not connect	
DVDD_PLL	Supply	PLL power supply	
DVdd_PHY	Supply	Digital PHY power supply. Digital power supply for the serial interface (1.2V)	
VAA	Supply		
VAA_PIX	Supply	ply Analog power supply for the pixel array (2.7V)	
Agnd	Supply	Supply Analog ground	
DVDD, DVDD_ANA	Supply		
VDD_IO, VDDIO_ANA	Supply	I/O power supply (1.8V)	
Dgnd	Supply	Common ground for digital and I/O	

ON Semiconductor Confidential and Proprietary

Advance

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Output Data Format

Table 4: Signal Descriptions

Name	Туре	Description
VDD_SLVS	SLVS Supply The VDD_SLVS is an internally driven 0.4V reference voltage. It must connect to Do bypass cap (0.1uF).	

Output Data Format

Serial Pixel Data Interface

The AR1335HS serial pixel data interface implements data/clock and data/strobe signaling in accordance with the MIPI specifications. The RAW10 and RAW8 image data formats are supported.

Two-Wire Serial Register Interface

The two-wire serial interface bus enables read/write access to control and status registers within the AR1335HS. The interface protocol uses a master/slave model in which a master controls one or more slave devices. The sensor acts as a slave device. The master generates a clock (SCLK) that is an input to the sensor and is used to synchronize transfers. Data is transferred between the master and the slave on a bidirectional signal (SDATA). SDATA is pulled up to VDD off-chip by a $1.5k\Omega$ resistor. Either the slave or master device can drive SDATA LOW-the interface protocol determines which device is allowed to drive SDATA at any given time.

The protocols described in the two-wire serial interface specification allow the slave device to drive SCLK LOW; the AR1335HS uses SCLK as an input only and therefore never drives it LOW.

Protocol

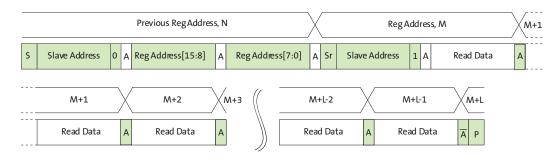
 Data transfers on the two-wire serial interface bus are performed by a sequence of low-level protocol elements: 1. a (repeated) start condition 2. a slave address/data direction byte 3. an (a no) acknowledge bit 4. a message byte 5. a stop condition
The bus is idle when both SCLK and SDATA are HIGH. Control of the bus is initiated with a start condition, and the bus is released with a stop condition. Only the master can generate the start and stop conditions.
A start condition is defined as a HIGH-to-LOW transition on SDATA while SCLK is HIGH. At the end of a transfer, the master can generate a start condition without previously generating a stop condition; this is known as a "repeated start" or "restart" condition.
A stop condition is defined as a LOW-to-HIGH transition on SDATA while SCLK is HIGH.

Data Transfer

Data is transferred serially, 8 bits at a time, with the MSB transmitted first. Each byte of data is followed by an acknowledge bit or a no-acknowledge bit. This data transfer mechanism is used for the slave address/data direction byte and for message bytes. One data bit is transferred during each SCLK clock period. SDATA can change when SCLK is LOW and must be stable while SCLK is HIGH. Slave Address/Data Direction Byte Bits [7:1] of this byte represent the device slave address and bit [0] indicates the data transfer direction. A "0" in bit [0] indicates a WRITE, and a "1" indicates a READ. The default slave addresses used by the AR1335HS for the MIPI-configured sensor are 0x6C (write address) and 0x6D (read address) in accordance with the MIPI specification. Alternate slave addresses of 0x6E(write address) and 0x6F(read address) can be selected by enabling and asserting the SADDR signal through the GPI pad. An alternate slave address can also be programmed through R0x31FC. **Message Byte** Message bytes are used for sending register addresses and register write data to the slave device and for retrieving register read data. **Acknowledge Bit** Each 8-bit data transfer is followed by an acknowledge bit or a no-acknowledge bit in the SCLK clock period following the data transfer. The transmitter (which is the master when writing, or the slave when reading) releases SDATA. The receiver indicates an acknowledge bit by driving SDATA LOW. As for data transfers, SDATA can change when SCLK is LOW and must be stable while SCLK is HIGH. **No-Acknowledge Bit** The no-acknowledge bit is generated when the receiver does not drive SDATA LOW during the SCLK clock period following a data transfer. A no-acknowledge bit is used to terminate a read sequence. **Typical Sequence** A typical READ or WRITE sequence begins by the master generating a start condition on the bus. After the start condition, the master sends the 8-bit slave address/data direction byte. The last bit indicates whether the request is for a read or a write, where a "0" indicates a write and a "1" indicates a read. If the address matches the address of the slave device, the slave device acknowledges receipt of the address by generating an acknowledge bit on the bus. If the request was a WRITE, the master then transfers the 16-bit register address to which the WRITE should take place. This transfer takes place as two 8-bit sequences and the slave sends an acknowledge bit after each sequence to indicate that the byte has been received. The master then transfers the data as an 8-bit sequence; the slave sends an acknowledge bit at the end of the sequence. The master stops writing by generating a (re)start or stop condition. If the request was a READ, the master sends the 8-bit write slave address/data direction byte and 16-bit register address, the same way as with a WRITE request. The master then generates a (re)start condition and the 8-bit read slave address/data direction byte, and

clocks out the register data, eight bits at a time. The master generates an acknowledge

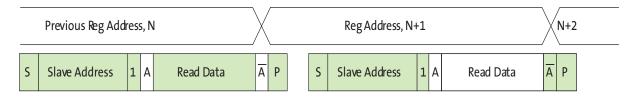
Advance


AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Two-Wire Serial Register Interface

bit after each 8-bit transfer. The slave's internal register address is automatically incremented after every 8 bits are transferred. The data transfer is stopped when the master sends a no-acknowledge bit.

Single READ from Random Location

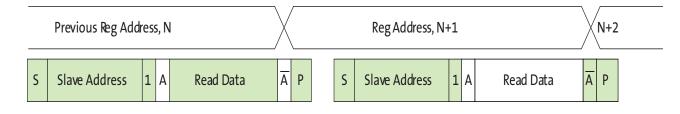
This sequence (Figure 4 on page 11) starts with a dummy WRITE to the 16-bit address that is to be used for the READ. The master terminates the WRITE by generating a restart condition. The master then sends the 8-bit read slave address/data direction byte and clocks out one byte of register data. The master terminates the READ by generating a no-acknowledge bit followed by a stop condition. Figure 4 shows how the internal register address maintained by the AR1335HS is loaded and incremented as the sequence proceeds.


Figure 4: Single READ from Random Location

Single READ from Current Location

This sequence (Figure 5) performs a read using the current value of the AR1335HS internal register address. The master terminates the READ by generating a no-acknowl-edge bit followed by a stop condition. The figure shows two independent READ sequences.

Figure 5: Single READ from Current Location



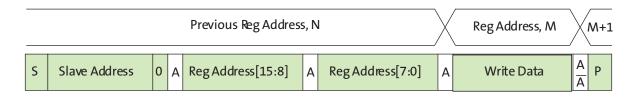
Sequential READ, Start from Random Location

This sequence (Figure 6) starts in the same way as the single READ from random location (Figure 4). Instead of generating a no-acknowledge bit after the first byte of data has been transferred, the master generates an acknowledge bit and continues to perform byte READs until "L" bytes have been read.

Figure 6: Sequential READ, Start from Random Location

Sequential READ, Start from Current Location

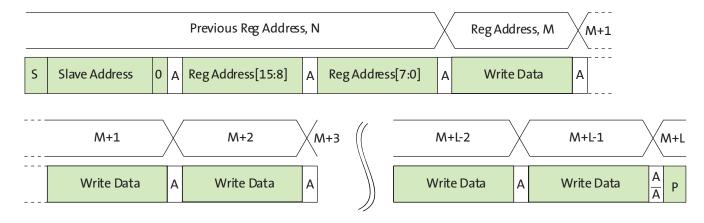
This sequence (Figure 7) starts in the same way as the single READ from current location (Figure 5 on page 11). Instead of generating a no-acknowledge bit after the first byte of data has been transferred, the master generates an acknowledge bit and continues to perform byte READs until "L" bytes have been read.


Figure 7: Sequential READ, Start from Current Location

Single WRITE to Random Location

This sequence (Figure 8) begins with the master generating a start condition. The slave address/data direction byte signals a WRITE and is followed by the HIGH then LOW bytes of the register address that is to be written. The master follows this with the byte of write data. The WRITE is terminated by the master generating a stop condition.

Figure 8: Single WRITE to Random Location



Sequential WRITE, Start at Random Location

This sequence (Figure 9) starts in the same way as the single WRITE to random location (Figure 8). Instead of generating a no-acknowledge bit after the first byte of data has been transferred, the master generates an acknowledge bit and continues to perform byte WRITEs until "L" bytes have been written. The WRITE is terminated by the master generating a stop condition.

Figure 9: Sequential WRITE, Start at Random Location

Registers

The AR1335HS provides a 16-bit register address space accessed through a serial interface ("Two-Wire Serial Register Interface" on page 9). Each register location is 8 or 16 bits in size.

The address space is divided into the five major regions shown in Table 5. The remainder of this section describes these registers in detail.

Table 5: Address Space Regions

Address Range Description	
0x0000-0x0FFF	Configuration registers (read-only and read-write dynamic registers)
0x1000-0x1FFF	Parameter limit registers (read-only static registers)
0x2000-0x2FFF	Image statistics registers (none currently defined)
0x3000-0x3FFF	Manufacturer-specific registers (read-only and read-write dynamic registers)
0x4000-0xFFFF	Reserved (undefined)

Register Notation

	The underlying mechanism for reading and writing registers provides byte write capa- bility. However, it is convenient to consider some registers as multiple adjacent bytes. The AR1335HS uses 8-bit, 16-bit, and 32-bit registers, all implemented as 1 or more bytes at naturally aligned, contiguous locations in the address space.
	In this document, registers are described either by address or by name. When registers are described by address, the size of the registers is explicit. For example, R0x3024 is an 8-bit register at address 0x3024, and R0x3000–1 is a 16-bit register at address 0x3000–0x3001. When registers are described by name, the size of the register is implicit. It is necessary to refer to the register table to determine that model_id is a 16-bit register.
Register Aliases	
	A consequence of the internal architecture of the AR1335HS is that some registers are decoded at multiple addresses. Some registers in "configuration space" are also decoded in "manufacturer-specific space." To provide unique names for all registers, the name of the register within manufacturer-specific register space has a trailing underscore. For example, R0x0000–1 is model_id, and R0x3000–1 is model_id The effect of reading or writing a register through any of its aliases is identical.
Bit Fields	
	Some registers provide control of several different pieces of related functionality, and this makes it necessary to refer to bit fields within registers. As an example of the notation used for this, the least significant 4 bits of the model_id register are referred to as model_id[3:0] or R0x0000–1[3:0].
Bit Field Aliases	
	In addition to the register aliases described above, some register fields are aliased in multiple places. For example, R0x0100 (mode_select) has only one operational bit, R0x0100[0]. This bit is aliased to R0x301A–B[2]. The effect of reading or writing a bit field through any of its aliases is identical.

ON Semiconductor Confidential and Proprietary

Advance

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Registers

Byte Ordering	
	Registers that occupy more than one byte of address space are shown with the lowest address in the highest-order byte lane to match the byte-ordering on the data bus. For example, the model_id register is R0x0000–1. In the register table the default value is shown as 0x0153. This means that a read from address 0x0000 would return 0x01, and a read from address 0x0001 would return 0x53. When reading this register as two 8-bit transfers on the serial interface, the 0x01 will appear on the serial interface first, followed by the 0x53.
Address Alignment	
	All register addresses are aligned naturally. Registers that occupy 2 bytes of address space are aligned to even 16-bit addresses, and registers that occupy 4 bytes of address space are aligned to 16-bit addresses that are an integer multiple of 4.
Bit Representation	
	For clarity, 32-bit hex numbers are shown with an underscore between the upper and lower 16 bits. For example: 0x3000_01AB.
Data Format	
	Most registers represent an unsigned binary value or set of bit fields. For all other register formats, the format is stated explicitly at the start of the register description. The notation for these formats is shown in Table 6.

Table 6: Data Formats

NameDescriptionFIX16Signed fixed-point, 16-bit number: two's complement number, 8 fractional bits. Examples: 0x0100 = 1.0, 0x8000 = -128, 0xFFFF = -0.0039065UFIX16Unsigned fixed-point, 16-bit number: 8.8 format. Examples: 0x0100 = 1.0, 0x280 = 2.5FLP32Signed floating-point, 32-bit number: IEEE 754 format. Example: 0x4280_0000 = 64.0		Description
		Unsigned fixed-point, 16-bit number: 8.8 format. Examples: 0x0100 = 1.0, 0x280 = 2.5
		Signed floating-point, 32-bit number: IEEE 754 format. Example: 0x4280_0000 = 64.0

Register Behavior

Registers vary from "read-only," "read/write," and "read, write-1-to-clear."

Double-Buffered Registers

Some sensor settings cannot be changed during frame readout. For example, changing R0x0344–5 (x_addr_start) partway through frame readout would result in inconsistent row lengths within a frame. To avoid this, the AR1335HS double-buffers many registers by implementing a "pending" and a "live" version. Reads and writes access the pending register. The live register controls the sensor operation.

The value in the pending register is transferred to a live register at a fixed point in the frame timing, called frame start. Frame start is defined as the point at which the first dark row is read out internally to the sensor. In the register tables the "Frame Sync'd" column shows which registers or register fields are double-buffered in this way.

Using grouped_parameter_hold

Register grouped_parameter_hold (R0x0104) can be used to inhibit transfers from the pending to the live registers. When the AR1335HS is in streaming mode, this register should be written to "1" before making changes to any group of registers where a set of changes is required to take effect simultaneously. When this register is written to "0," all transfers from pending to live registers take place on the next frame start.

An example of the consequences of failing to set this bit follows:

An external auto exposure algorithm might want to change both gain and integration time between two frames. If the next frame starts between these operations, it will have the new gain, but not the new integration time, which would return a frame with the wrong brightness that might lead to a feedback loop with the AE algorithm resulting in flickering.

Bad Frames

A bad frame is a frame where all rows do not have the same integration time or where offsets to the pixel values have changed during the frame.

Many changes to the sensor register settings can cause a bad frame. For example, when line_length_pck (R0x0342–3) is changed, the new register value does not affect sensor behavior until the next frame start. However, the frame that would be read out at that frame start will have been integrated using the old row width, so reading it out using the new row width would result in a frame with an incorrect integration time.

By default, bad frames are masked. If the masked bad frame option is enabled, both LV and FV are inhibited for these frames so that the vertical blanking time between frames is extended by the frame time.

In the register tables, the "Bad Frame" column shows where changing a register or register field will cause a bad frame. This notation is used:

N—No. Changing the register value will not produce a bad frame.

Y—Yes. Changing the register value might produce a bad frame.

YM—Yes; but the bad frame will be masked out when mask_corrupted_frames (R0x0105) is set to "1."

Changes to Integration Time

If the integration time is changed while FV is asserted for frame n, the first frame output using the new integration time is frame (n + 2). The sequence is as follows:

- 1. During frame *n*, the new integration time is held in the pending register.
- 2. At the start of frame (n + 1), the new integration time is transferred to the live register. Integration for each row of frame (n + 1) has been completed using the old integration time.
- 3. The earliest time that a row can start integrating using the new integration time is immediately after that row has been read for frame (n + 1). The actual time that rows start integrating using the new integration time is dependent upon the new value of the integration time.
- 4. When frame (n + 2) is read out, it will have been integrated using the new integration time.

If the integration time is changed on successive frames, each value written will be applied for a single frame; the latency between writing a value and it affecting the frame readout remains at two frames.

Changes to Gain Settings

Usually, when the gain settings are changed, the gain is updated on the next frame start. When the integration time and the gain are changed at the same time, the gain update is held off by one frame so that the first frame output with the new integration time also has the new gain applied. In this case, a new gain should not be set during the extra frame delay. There is an option to turn off the extra frame delay by setting R0x301A–B[14].

Reading the Sensor Revision Number

Follow the steps below to obtain the revision number of the image sensor:

- 1. Set the register bit field R0x301A[5] = 1.
- 2. Read the register bit fields R0x31FE[3:0].
- 3. Convert the binary number to decimal to obtain customer revision. For example, binary value "0001" = sensor revision 1.

Programming Restrictions

Table 7 shows a list of programming rules that must be adhered to for correct operation of the AR1335HS. It is recommended that these rules are encoded into the device driver stack—either implicitly or explicitly.

Table 7:Programming Rules

Parameter	Minimum Value	Maximum Value
coarse_integration_time	8 rows	frame_length_lines - coarse_integration_time_max_margin
digital_gain_*	digital_gain_min	digital_gain_max
digital_gain_* is an integer multiple of digital_gain_step_size		
line_length_pck	min_line_length_pck ((x_addr_end - x_addr_start + x_odd_inc) /xskip) + min_line_blanking_pck line_length_pck ≥ (x_output_size + constant) x (vt_pix_clk period) / (op_pix_clk period) Note: Constant is 0x20 and 0x68 for MIPI.	max_line_length_pck
frame_length_lines	min_frame_length_lines ((y_addr_end - y_addr_start + y_odd_inc)/yskip) + min_frame_blanking_lines	max_frame_length_lines
x_addr_start (must be an even number)	x_addr_min	x_addr_max
x_addr_end (must be an odd number)	x_addr_start	x_addr_max
(x_addr_end - x_addr_start + x_odd_inc)	Must be multiple of 8 for skip1, 16 for skip2, 32 for skip4	must be positive
y_addr_start (must be an even number)	y_addr_min	y_addr_max
y_addr_end (must be an odd number)	y_addr_start	y_addr_max
(y_addr_end – y_addr_start + y_odd_inc)	Must be multiple of 8 for skip1, 16 for skip2, 32 for skip4	must be positive
x_odd_inc (must be an odd number)	min_odd_inc	max_odd_inc
y_odd_inc (must be an odd number)	min_odd_inc	max_odd_inc
scale_m	scaler_m_min	scaler_m_max
x_output_size (must be even number – this is enforced in hardware)	320	4224
y_output_size (must be even number – this is enforced in hardware)	2	frame_length_lines

Output Size Restrictions

The design specification imposes the restriction that an output line is a multiple of 32 bits in length. This imposes an additional restriction on the legal values of x_output_size :

• When R0x0112 [7:0] = 10 (RAW10/RAW8 data), x_output_size must be a multiple of 16 (x_output_size[3:0] = 0).

This restriction only applies when the serial pixel data path is in use. It can be met by rounding up x_output_size to an appropriate multiple. Any extra pixels in the output image as a result of this rounding contain undefined pixel data but are guaranteed not to cause false synchronization on the serial data stream.

There is an additional restriction that x_output_size must be small enough such that the output row time (set by x_output_size, the framing and CRC overhead of 12 bytes and the output clock rate) must be less than the row time of the video array (set by line_length_pck and the video timing clock rate).

Effect of Scaler on Legal Range of Output Sizes

When the scaler is enabled, it is necessary to adjust the values of x_output_size to match the image size generated by the scaler. The AR1335HS will operate incorrectly if the x_output_size is significantly larger than the output image.

To understand the reason for this, consider the situation where the sensor is operating at full resolution and the scaler is enabled with a scaling factor of 32 (half the number of pixels in each direction). This situation is shown in Figure 10 on page 19.

Figure 10: Effect of Limiter on the Data Path

Core output:full resolution, x_output_size = x_addr_end - x_addr_start + 1	
PIXEL_VAUD	
Scaler output: scaled to half size LINE_VALID	
Limiter output: scaled to half size, x_output_size = x_addr_end -x_addr_start + 1	

LINE_VALID	
PIXEL_VAUD	

In Figure 10, three different stages in the data path (see "Timing Specifications" on page 51) are shown. The first stage is the output of the sensor core. The core is running at full resolution and x_output_size is set to match the active array size. The LV signal is asserted once per row and remains asserted for *N* pixel times. The PIXEL_VALID signal toggles with the same timing as LV, indicating that all pixels in the row are valid.

The second stage is the output of the scaler, when the scaler is set to reduce the image size by one-half in x dimension. The effect of the scaler is to combine groups of pixels. Therefore, the row time remains the same, but only half the pixels out of the scaler are valid. This is signaled by transitions in PIXEL_VALID. Overall, PIXEL_VALID is asserted for (N/2) pixel times per row.

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Programming Restrictions

The third stage is the output of the limiter when the x_output_size is still set to match the active array size. Because the scaler has reduced the amount of valid pixel data without reducing the row time, the limiter attempts to pad the row with (N/2) additional pixels. If this has the effect of extending LV across the whole of the horizontal blanking time, the AR1335HS will cease to generate output frames.

A correct configuration is shown in Figure 11 on page 20, in addition to showing the x_output_size reduced to match the output size of the scaler. In this configuration, the output of the limiter does not extend LV.

Figure 11 on page 20 also shows the effect of the output FIFO, which forms the final stage in the data path. The output FIFO merges the intermittent pixel data back into a contiguous stream. Although not shown in this example, the output FIFO is also capable of operating with an output clock that is at a different frequency from its input clock.

Figure 11: Timing of Data Path

Core output: full resolution, x_output_size = x_addr_end - x_addr_start + 1
LINE_VALID
PIXEL_VAUD
Scaler cutput: scaled to half size
Limiter output: scaled to half size, x_output_size = (x_addr_end - x_addr_start + 1)/2 LINE_VALID
Output FIFO: scaled to half size, x_output_size= (x_addr_end - x_addr_start + 1)/2
LINE_VALID
PIXEL VAUD

Output Data Timing

The output FIFO acts as a boundary between two clock domains. Data is written to the FIFO in the VT (video timing) clock domain. Data is read out of the FIFO in the OP (output) clock domain.

When the scaler is disabled, the data rate in the VT clock domain is constant and uniform during the active period of each pixel array row readout. When the scaler is enabled, the data rate in the VT clock domain becomes intermittent, corresponding to the data reduction performed by the scaler.

A key constraint when configuring the clock for the output FIFO is that the frame rate out of the FIFO must exactly match the frame rate into the FIFO. When the scaler is disabled, this constraint can be met by imposing the rule that the row time on the serial data stream must be greater than or equal to the row time at the pixel array. The row time on the serial data stream is calculated from the x_output_size and the data_format (8, 10, or 12 bits per pixel), and must include the time taken in the serial data stream for start of frame/row, end of row/frame and checksum symbols.

Caution If this constraint is not met, the FIFO will either underrun or overrun. FIFO underrun or overrun is a fatal error condition that is signaled through the datapath_status register (R0x306A).

Control of the Signal Interface

This section describes the operation of the signal interface in all functional modes.

The AR1335HS sensor provides a MIPI serial interface for pixel data.

MIPI Serial Pixel Data Interface

The serial pixel data interface uses the following output-only signal pairs:

- DATA_P
- DATA_N
- DATA2_P
- DATA2_N
- DATA3_P
- DATA3_N
- DATA4_P
- DATA4_N
- CLK_P
- CLK_N

The signal pairs use both single-ended and differential signaling, in accordance with the MIPI specification. The serial pixel data interface is enabled by default at power up and after reset.

The DATA_P, DATA_N, DATA2_P, DATA2_N, CLK_P, and CLK_N pads are set to the Ultra Low Power State (ULPS) if the SMIA serial disable bit is asserted (R0x301A-B[12]=1) or when the sensor is in the hardware standby or soft standby system states.

The data_format (R0x0112-3) register can be programmed to the following data format setting:

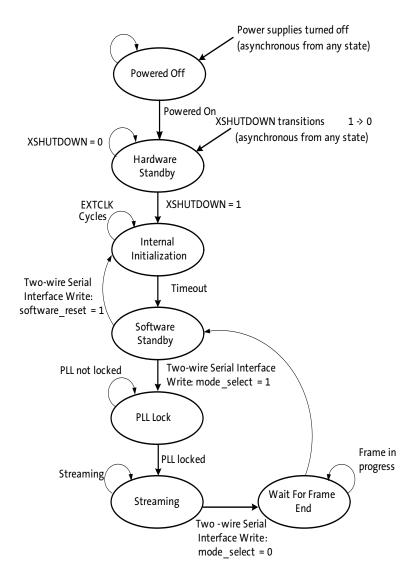
- 0x0A0A Sensor supports RAW10 uncompressed data format. This mode is supported by discarding all but the upper 10 bits of a pixel value.
- 0x0808 Sensor supports RAW8 uncompressed data format. This mode is supported by discarding all but the upper 8 bits of a pixel value.
- 0x0A08 Sensor supports RAW8 data format in which an adaptive compression algorithm is used to perform 10-bit to 8-bit compression on the upper 10 bits of each pixel value

The serial_format register (R0x31AE–F) controls which serial interface is in use when the serial interface is enabled (reset_register[12] = 0). The following serial formats are supported:

- 0x0202 Sensor supports 2-lane MIPI operation
- 0x0203 Sensor supports 3-lane MIPI operation
- 0x0204 Sensor supports 4-lane MIPI operation

ON Semiconductor Confidential and Proprietary

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor System States


Advance

System States

The system states of the AR1335HS are represented as a state diagram in Figure 12 and described in subsequent sections. The effect of XSHUTDOWN on the system state and the configuration of the PLL in the different states are shown in Table 8 on page 23.

The sensor's operation is broken down into three separate states: hardware standby, software standby, and streaming. The transition between these states might take a certain amount of clock cycles as outlined in Table 8 on page 23.

Figure 12: AR1335HS System States

Table 8: XSHUTDOWN and PLL in System States

State	XSHUTDOWN	PLL
Powered off	x	VCO powered down
Hardware standby	0	
Internal initialization	1	
Software standby		
PLL Lock		VCO powering up and locking, PLL output bypassed
Streaming		VCO running, PLL output active
Wait for frame end		

Soft Reset Sequence

The AR1335HS can be reset under software control by writing "1" to software_reset (R0x0103). A software reset asynchronously resets the sensor, truncating any frame that is in progress. The sensor starts the internal initialization sequence, while the PLL and analog blocks are turned off. At this point, the behavior is exactly the same as for the power-on reset sequence.

Signal State During Reset

Table 9 shows the state of the signal interface during hardware standby (XSHUTDOWN asserted) and the default state during software standby (after exit from hardware standby and before any registers within the sensor have been changed from their default power-up values).

Table 9:Signal State During Reset

Pad Name	Pad Type	Hardware Standby	Software Standby
EXTCLK	Input	Enabled. Must be driven to a valid logic level.	
XSHUTDOWN	Input	Enabled. Must be driven to a valid logic l	level.
Sclk	Input	Enabled. Must be pulled up or driven to	a valid logic level.
Sdata	I/O	Enabled as an input. Must be pulled up o	or driven to a valid logic level.
GPIO[1:0]	I/O	High-Z.	Logic 0.
DATA_P	Output	MIPI: Ultra Low-Power State (ULPS), represented	
DATA_N	Output	as an LP-00 state on t	he wire (both wires at 0V).
DATA2_P	Output	7	
DATA2_N	Output	7	
DATA3_P	Output	7	
DATA3_N	Output	7	
DATA4_P	Output	7	
DATA4_N	Output	1	
CLK_P	Output	1	
CLK_N	Output		
GPI[3:2]	Input	Powered down. Can be left disconnected	d/floating.
TEST	Input	Must be driven to 0 for normal operation	n.

General Purpose Input and Output

The AR1335HS provides four general purpose input and output pads, as listed inTable 10. GPIO[1:0] are defined as bidirectional (input and output), GPI[3:2] input only.

After power on reset, GPIO[0] is assigned as an output of Flash signal and GPIO[1] is assigned as an output of Shutter signal. Other two GPI are powered down if not used.

PIN Names	Functions
GPIO[0]	General Input and one Output a. (Default Output) Flash b. (Input) All options in GPI2
GPIO[1]	General Input and two Output functions a. (Default Output) Shutter b. (Output) 3-D daisy chain communication output c. (Input) all options in GPI2
GPI[2]	General Input a. SADDR, second I ² C device address b. Trigger signal for Slave Mode c. Standby
GPI[3]	General Input a. 3-D daisy chain communication input b. All options in GPI2

 Table 10:
 General Purpose Input and Output Pad Functions


Streaming/Standby Control

The AR1335HS can be switched between its soft standby and streaming states under pin or register control, as shown in Table 11. Selection of a pin to use for the STANDBY function is described in "General Purpose Input and Output" on page 25. The state diagram for transitions between soft standby and streaming states is shown in Figure 12 on page 22.

Table 11: Streaming/STANDBY

STANDBY	Streaming R0x301A–B[2]	Description
Disabled	0	Soft standby
Disabled	1	Streaming
Х	0	Soft standby
0	1	Streaming
1	Х	Soft standby

ON Semiconductor Confidential and Proprietary

Advance

Clocking

Default setup provides a physical 242 MHz internal clock for an external input clock of 25 MHz. Maximum allowed for vt_pix_clk is 242 MHz and the design VCO range is between 320 – 1200 MHz.

The sensor contains two phase-locked loops (PLL). Each PLL contains a prescaler to divide the input clock applied on EXTCLK, a VCO to multiply the prescaler output, and a set of dividers to generate the output clocks.

Note that the data rate of the pixel domain cannot be less than the data rate of the output domain or there will be underflow errors.

Figure 13 shows the different clocks and the names of the registers that contain or are used to control their values.

Figure 13: AR1335HS Profile 1/2 Clocking Structure

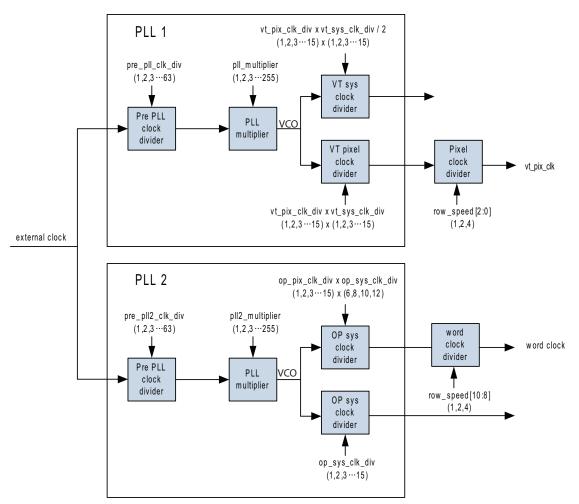


Figure 13 shows the different clocks and the names of the registers that contain or are used to control their values. The figure shows the default setting for each divider/multiplier control register and the range of legal values for each divider/multiplier control register.

- As per the diagram, the clock frequencies can be calculated as follows:
- pixel_clock (This is the main clock of the sensor). Two data values are processed per clock cycle

$$clk_pixel_freq_mhz = \frac{ext_clk_freq_mhz \times pll_multiplier1}{pre_pll_clk_div1 \times vt_sys_clk_div \times vt_pix_clk_div \times row_speed[2:0]}$$
(EQ 1)

• Word_clock (This is the output domain clock). Two data values are processed per clock cycle:

 $clk_word_freq_mhz = \frac{ext_clk_freq_mhz \times pll_multiplier2}{pre_pll_clk_div2 \times op_sys_clk_div \times op_pix_clk_div \times row_speed[10:8]}$ (EQ 2)

• Bit_clock (This is the serial domain clock), depending on the number of lanes the data rate will vary

$$clk_bit_freq_mhz = \frac{ext_clk_freq_mhz \times pll_multiplier2}{pre_pll_clk_div2 \times op_sys_clk_div}$$
(EQ 3)

Note: In Profile 0, RAW10 data format is required. As a result, op_pix_clk_div must be set to 10. Also, due to the inherent design of the AR1335HS sensor, vt_pix_clk_div must be set to 5 for profile 0 mode.)

PLL Clocking

The PLL divisors should be programmed while the AR1335HS is in the software standby state. After programming the divisors, it is necessary to wait for the VCO lock time before enabling the PLL. The PLLs are enabled by entering the streaming state.

The effect of programming the PLL divisors while the AR1335HS is in the streaming state is undefined.

Influence of ccp_data_format

R0x0112–3 (ccp_data_format) controls whether the pixel data interface will generate 10 or 8 bits or 6 bits per pixel.

When the pixel data interface is generating 10 bits per pixel, op_pix_clk_div must be programmed with the value 10.

Features

Shading Correction (SC)

Lenses tend to produce images whose brightness is significantly attenuated near the edges. There are also other factors causing fixed pattern signal gradients in images captured by image sensors. The cumulative result of all these factors is known as image shading. The AR1335HS has an embedded shading correction module that can be programmed to counter the shading effects on each individual Red, GreenB, GreenR and Blue color signal.

The Correction Function

Color-dependent solutions are calibrated using the sensor, lens system and an image of an evenly illuminated, featureless gray calibration field. From the resulting image, register values for the color correction function (coefficients) can be derived.

The correction functions can then be applied to each pixel value to equalize the response across the image as follows:

$$Pcorrected(row, col) = Psensor(row, col) * f(row, col)$$
(EQ 4)

where P are the pixel values and f is the color dependent correction functions for each color channel.

Each function includes a set of color-dependent coefficients defined by registers R0x3600–3726. The function's origin is the center point of the function used in the calculation of the coefficients. Using an origin near the central point of symmetry of the sensor response provides the best results. The center point of the function is determined by ORIGIN_C (R0x3782) and ORIGIN_R (R0x3784) and can be used to counter an offset in the system lens from the center of the sensor array.

One-Time Programmable Memory (OTPM)

The AR1335HS features 6.8 kbits of one-time programmable memory (OTPM) for storing shading correction coefficients, individual module, and sensor specific information. The user may program which set to be used. Additional bits are used by the error detection and correction scheme. OTPM can be accessed through two-wire serial interface. The AR1335HS uses the auto mode for fast OTPM programming and read operations.

The programming of the OTPM requires the sensor to be fully powered and remain in software standby with its clock input applied. The information will be programmed through the use of the two-wire serial interface, and once the data is written to an internal register, and send a program command to initiate the anti-fusing process. After the sensor has finished programming the OTPM, a status bit will be set to indicate the end of the programming cycle, and the host machine can poll the setting of the status bit through the two-wire serial interface. Only one programming cycle for the 16-bit word can be performed.

Reading the OTPM data requires the sensor to be fully powered and operational with its clock input applied. The data can be read through a register from the two-wire serial interface.

Image Acquisition Mode

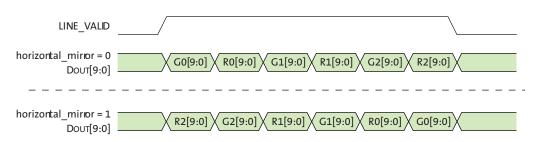
The AR1335HS supports an image acquisition mode, the electronic rolling shutter (ERS) mode. This is the normal mode of operation. When the AR1335HS is streaming, it generates frames at a fixed rate, and each frame is integrated (exposed) using the ERS. When the ERS is in use, timing and control logic within the sensor sequences through the rows of the array, resetting and then reading each row in turn. In the time interval between resetting a row and subsequently reading that row, the pixels in the row integrate incident light. The integration (exposure) time is controlled by varying the time between row reset and row readout. For each row in a frame, the time between row reset and row readout is fixed, leading to a uniform integration time across the frame. When the integration time is changed (by using the two-wire serial interface to change register settings), the timing and control logic controls the transition from old to new integration time in such a way that the stream of output frames from the AR1335HS switches cleanly from the old integration time to the new while only generating frames with uniform integration. See "Changes to Integration Time" on page 16.

Window Control

The sequencing of the pixel array is controlled by the x_addr_start, y_addr_start, x_addr_end, and y_addr_end registers. The output image size is controlled by the x_output_ size and y_output_size registers.

Pixel Border

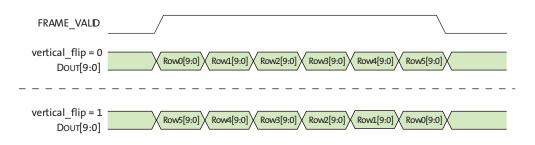
The default settings of the sensor provide a 4208H x 3120V image. A border of up to 8 pixels (4 in subsampling) on each edge can be enabled by reprogramming the x_ad-dr_start, y_addr_start, x_addr_end, y_addr_end, x_output_size, and y_output_size registers accordingly.



Readout Modes

Horizontal Mirror

When the horizontal_mirror bit is set in the image_orientation register, the order of pixel readout within a row is reversed, so that readout starts from x_addr_end and ends at x_addr_start. Figure 14 on page 30 shows a sequence of 6 pixels being read out with horizontal_mirror = 0 and horizontal_mirror = 1. Changing horizontal_mirror causes the Bayer order of the output image to change; the new Bayer order is reflected in the value of the pixel_order register.


Figure 14: Effect of horizontal_mirror on Readout Order

Vertical Flip

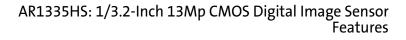
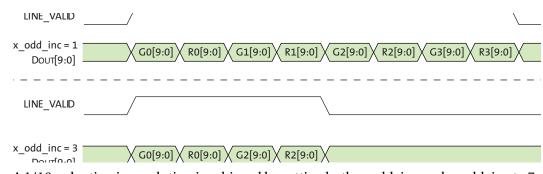

When the vertical_flip bit is set in the image_orientation register, the order in which pixel rows are read out is reversed, so that row readout starts from y_addr_end and ends at y_addr_start. Figure 15 shows a sequence of 6 rows being read out with vertical_flip = 0 and vertical_flip = 1. Changing vertical_flip causes the Bayer order of the output image to change; the new Bayer order is reflected in the value of the pixel_order register.

Figure 15: Effect of vertical_flip on Readout Order

Advance


Subsampling

The AR1335HS supports subsampling. Subsampling reduces the amount of data processed by the analog signal chain in the AR1335HS thereby allowing the frame rate to be increased. Subsampling is enabled by setting x_odd_inc and/or y_odd_inc. Values of 1, 3, 5, and 7 can be supported. Setting both of these variables to 3 reduces the amount of row and column data processed and is equivalent to the 2 x 2 skipping readout mode provided by the AR1335HS (see Table 12). Setting x_odd_inc = 3 and y_odd_inc = 3 results in a quarter reduction in output image size. Setting x_odd_inc = 7 and y_odd_inc = 7 results in a 1/9 reduction in output image size. Figure 16 shows a sequence of 8 columns being read out with x_odd_inc = 3 and y_odd_inc = 1.

Table 12: Definitions for Programming Rules

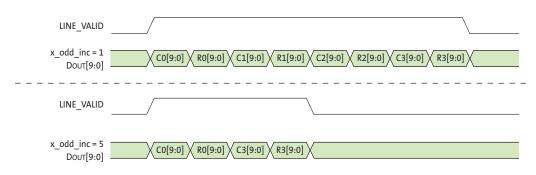
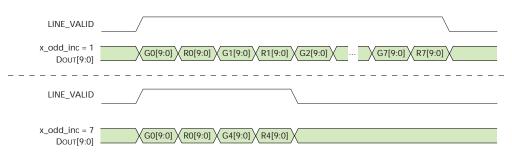

Name	Definition
xskip	<pre>xskip = 1 if x_odd_inc = 1 xskip = 2 if x_odd_inc = 3 xskip = 3 if x_odd_inc = 5 xskip = 4 if x_odd_inc = 7</pre>
yskip	<pre>yskip = 1 if y_odd_inc = 1 yskip = 2 if y_odd_inc = 3 yskip = 3 if y_odd_inc = 5 yskip = 4 if y_odd_inc = 7</pre>

Figure 16: Effect of x_odd_inc = 3 on Readout Sequence

A 1/16 reduction in resolution is achieved by setting both x_odd_inc and y_odd_inc to 7. This is equivalent to 4 x 4 skipping readout mode provided by the AR1335HS. Figure 18 shows a sequence of 16 columns being read out with $x_odd_inc = 7$ and $y_odd_inc = 1$.


Figure 17: Effect of x_odd_inc=5 on Readout Sequence

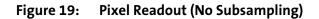


Figure 18: Effect of x_odd_inc = 7 on Readout Sequence

The effect of the different subsampling settings on the pixel array readout is shown in Figure 19 through Figure 22 on page 34.

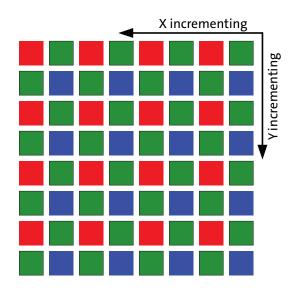


Figure 20: Pixel Readout (x_odd_inc = 3, y_odd_inc = 3)

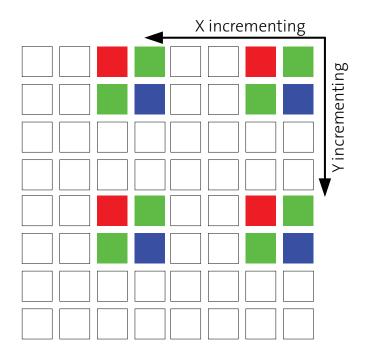
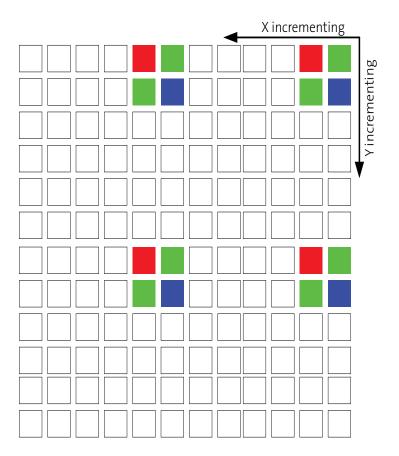




Figure 21: Pixel Readout (x_odd_inc = 5, y_odd_inc = 5)

Figure 22: Pixel Readout (x_odd_inc = 7, y_odd_inc = 7)

Programming Restrictions When Subsampling

When subsampling is enabled as a viewfinder mode and the sensor is switched back and forth between full resolution and subsampling, ON Semiconductor recommends that line_length_pck be kept constant between the two modes. This allows the same integration times to be used in each mode.

When subsampling is enabled, it may be necessary to adjust the x_addr_end, x_addr_start and y_addr_end settings: the values for these registers are required to correspond with rows/columns that form part of the subsampling sequence. The adjustment should be made in accordance with these rules:

 $x_skip_factor = (x_odd_inc + 1) / 2$ $y_skip_factor = (y_odd_inc + 1) / 2$

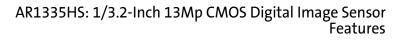
- x_addr_start should be a multiple of x_skip_factor x 4
- (x_addr_end x_addr_start + x_odd_inc) should be a multiple of x_skip_factor x 4
- (y_addr_end y_addr_start + y_odd_inc) should be a multiple of y_skip_factor x 4

The number of columns/rows read out with subsampling can be found from the equation below:

• columns/rows = (addr_end - addr_start + odd_inc) / skip_factor

Table 13 shows the row or column address sequencing for normal and subsampled readout. In the 2X skip case, there are two possible subsampling sequences (because the subsampling sequence only reads half of the pixels) depending upon the alignment of the start address. Similarly, there will be four possible subsampling sequences in the 4X skip case (though only the first two are shown in Table 13).

odd_inc=1(Normal)	odd_inc=3(2X Skip)	odd_inc=5(3X Skip)	odd_inc=7(4X Skip)
Start=0	Start=0	Start=0	Start=0
0	0	0	0
1	1	1	1
2			
3			
4	4		
5	5		
6		6	
7		7	
8	8		8
9	9		9
10			
11			
12	12	12	
13	13	13	
14			
15			
16	16		16
17	17		17
18		18	
19		19	


Table 13: Row Address Sequencing During Subsampling

odd_inc=1(Normal)	odd_inc=3(2X Skip)	odd_inc=5(3X Skip)	odd_inc=7(4X Skip)
Start=0	Start=0	Start=0	Start=0
20	20		
21	21		
22			
23			
24	24	24	24
25	25	25	25
26			
27			
28	28		
29	29		
30		30	
31		31	
32	32		32
33	33		33
34			
35			
36	36	36	
37	37	37	
38			
39			
40	40		40
41	41		41
42		42	
43		43	
44	44		
45	45		
46			
47			

Table 13: Row Address Sequencing During Subsampling (continued)

Scaler

Scaling is a "zoom out" operation to reduce the size of the output image while covering the same extent as the original image. Each scaled output pixel is calculated by taking a weighted average of a group input pixels which is composed of neighboring pixels. The input and output of the scaler is in Bayer format.

When compared to skipping, scaling is advantageous because it uses all pixel values to calculate the output image which helps avoid aliasing.

The AR1335HS sensor is capable of horizontal scaling only.

The scaling factor, programmable in 1/16 steps, is used for horizontal scaling.

The scale factor is determined by:

- m, which is adjustable with register R0x0404
- Legal values for m are 16 through 128, giving the user the ability to scale from 1:1 (m=16) to 1:8 (m=128).

Frame Rate Control

The formulas for calculating the frame rate of the AR1335HS are shown below.

The line length is programmed directly in pixel clock periods through register line_length_pck. For a specific window size, the minimum line length can be found from in Equation 5:

$$minimum \ line_length_pck = \left(\frac{x_addr_end - x_addr_start + 1}{subsampling \ factor} + min_line_blanking_pck\right)$$
(EQ 5)

Note that line_length_pck also needs to meet the minimum line length requirement set in register min_line_length_pck. The row time can either be limited by the time it takes to sample and reset the pixel array for each row, or by the time it takes to sample and read out a row. Values for min_line_blanking_pck are provided in "Minimum Row Time" on page 38.

The frame length is programmed directly in number of lines in the register frame_line_length. For a specific window size, the minimum frame length can be found in Equation 6:

$$minimum frame_length_lines = \left(\frac{y_addr_end - y_addr_start + 1}{subsampling factor} + min_frame_blanking_lines\right) (EQ 6)$$

The frame rate can be calculated from these variables and the pixel clock speed as shown in Equation 7:

$$frame \ rate = \frac{2 \times vt_pixel_clock_mhz \times 1 \times 10^{\circ}}{line_length_pck_x \ frame_length_lines}$$
(EQ 7)

If coarse_integration_time is set larger than frame_length_lines the frame size will be expanded to coarse_integration_time + 1.

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Features

Minimum Row Time

The minimum row time and blanking values are shown in Table 14.

Table 14: Minimum Row Time and Blanking Numbers

	No Column Binning	Column Binning
min_line_blanking_pck	212	132
min_line_length_pck	4612	4612

In addition, enough time must be given to the output FIFO so it can output all data at the set frequency within one row time. There are therefore three checks that must all be met when programming line_length_pck:

- line_length_pck \geq min_line_length_pck in Table 14.
- line_length_pck > (x_addr_end x_addr_start + x_odd_inc) / subsampling_factor + min_line_blanking_pck
- line_length_pck > (x_output_size/#_of_mipi_lane + 0x68) × (pix_clock_freq_mhz/ word_clock_freq_mhz) × 2

Minimum Frame Time

The minimum number of rows in the image is 2, so min_frame_length_lines will always equal (min_frame_blanking_lines + 2).

Table 15: Minimum Frame Time and Blanking Numbers

	No Row Binning	Row Binning
min_frame_blanking_lines	0xE	0xC

Integration Time

The integration (exposure) time of the AR1335HS is controlled by the coarse_integration_time registers.

The limits for the coarse integration time are defined by:

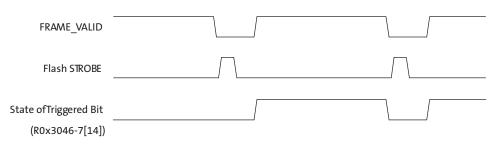
 $coarse_integration_time_min \le coarse_integration_time$ (EQ 8) The actual integration time is given by:

$$integration_time = \frac{coarse_integration_time \times line_length_pck}{2 \times vt \text{ pixel_clock freq mhz} \times 10^{6}}$$
(EQ 9)

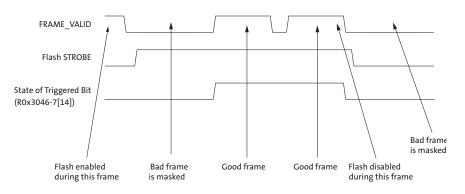
It is required that:

 $coarse_integration_time \le (frame_length_lines - coarse_integration_time_max_margin)$ (EQ 10)

If this limit is broken, the frame time will automatically be extended to (coarse_integration_time + coarse_integartion_time_max_margin) to accommodate the larger integration time. ON Semiconductor*


Advance

Flash Timing Control


The AR1335HS supports both xenon and LED flash timing through GPIO[0] (default output). The timing of the FLASH signal with the default settings is shown in Figure 23 (Xenon) and Figure 24 (LED). The flash and flash_count registers allow the timing of the flash to be changed. The flash can be programmed to fire only once, delayed by a few frames when asserted, and (for xenon flash) the flash duration can be programmed.

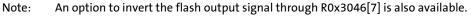

Enabling the LED flash will cause one bad frame, where several of the rows only have the flash on for part of their integration time. This can be avoided either by first enabling mask bad frames (R0x301A[9] = 1) before the enabling the flash or by forcing a restart (R0x301A[1] = 1) immediately after enabling the flash; the first bad frame will then be masked out, as shown in Figure 24. Read-only bit flash[14] is set during frames that are correctly integrated; the state of this bit is shown in Figures 23 and Figure 24.

Figure 23: Xenon Flash Enabled

Figure 24: LED Flash Enabled

Additional Features

Bit-depth Compression

AR1335HS supports SMIA DPCM with 10-8-10 and 10-6-10 compression.

The output compressed data is MSB-aligned. When compression is enabled, '0's are padded to the LSB side.

The registers listed in Table 16 are related to compression.

Table 16:Compression Registers

Address	Name	Register	Description
0x0112	data_format	RW	[3:0]: The bit-width of the compressed pixel data [11:8]: The bit-width of the uncompressed data
0x31AE	serial format	RW	[9:8]: serial interface type 2: MIPI 3: Reserved [2:0]: serial data lanes

3D Support

This function uses GPI (as an input) and GPIO1 (as an output). The input is sampled on rising CLK (EXTCLK) and the output changes on rising CLK (EXTCLK). In order to use this function, GPIO1 must be enabled as an output.

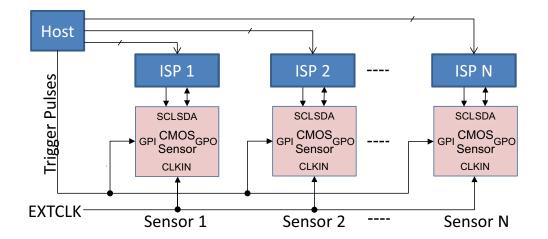
The CHAIN_CONTROL register should only be written when the sensor is not in streaming mode; the effect of writing to this register when the sensor is in streaming mode is UNDEFINED.

When chain_enable = 1 and master = 0, transitions on the SADDR input are propagated synchronously to the GPIO1 output.

When chain_enable = 1 and master = 1, GPIO1 generates 'events' under certain circumstances. An event is a 'start' bit followed by a 4-bit code.

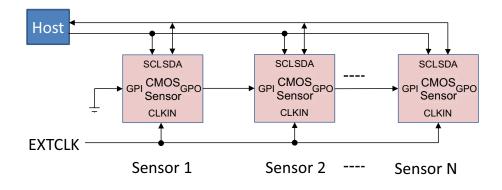
When chain_enable = 1 and sync_enable = 1 and master = 0, and the sensor core enters streaming mode (bit 2 in reset_register is changed to 1), the actual entry to streaming mode is delayed until the sensor receives an event.

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Multi-Camera Synchronization


Multi-Camera Synchronization

In order to make sure that cameras in a 3D system are working in sync, two synchronization methods are supported, Trigger Mode and Global Start.

Trigger Mode


The sensors should be wired as Figure 25. A sensor GPI is configured as the trigger pin. Each sensor runs like standalone, except being configured as trigger mode. It needs external pulses to start streaming. The host should transmit the pulses to the sensor trigger pins. All sensors should share the same trigger pulse signal and the same EXTCLK.

Global Start

The sensors should be wired as Figure 26. All sensors in this mode share the same I2C bus, which is mastered by the host. With the device ID configuration after power up, the host can broadcast commands to all sensors or access an individual sensor. To start and synchronize the first frame, the host broadcasts Start Streaming command to all sensors using the common device ID.

Advance

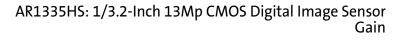
Integration Time for Interlaced HDR Readout

Tint1 (integration time 1) and Tint2 (integration time 2)

The limits for the coarse integration time are defined by:

 $coarse_integration_time_min \le coarse_integration_time \le (frame_length_lines - coarse_integration_time_max_margin)$ (EQ 11)

 $coarse_integration_time2_min \le coarse_integration_time2 \le (frame_length_lines - coarse_integration_time2_max_margin)$ (EQ 12)


The actual integration time is given by:

$$integration_time = \frac{coarse_integration_time \times line_length_pck}{2 \times vt_pixel_clock_freq_mhz \times 10^{6}}$$
(EQ 13)

$$integration_time2 = \frac{coarse_integration_time2 \times line_length_pck}{2 \times vt_pixel_clock_freq_mhz \times 10^{6}}$$
(EQ 14)

If this limit is broken, the frame time will automatically be extended to (*coarse_integration_time* + *coarse_integration_time_max_margin*) to accommodate the larger integration time.

The ratio between even and odd rows is typically adjusted to 1x, 2x, 4x, and 8x.

Gain

AR1335HS supports both analog and digital gain.

Analog Gain

Analog gain is provided by adjusting the column-parallel ADC reference voltage. The fine gain is implemented through adjusting the ADC reference voltage with fine steps. Global gain register (R0x305E) sets the analog gain. Analog coarse gain is set by setting bits R0x305E[6:4] while analog fine gain is set by setting bits R0x305E[3:0]. The maximum analog gain is 7.75x. Table 17 shows the recommended gain settings:

Table 17: Recommended Gain Settings

Gain Codes R0x305E[15:0]	Analog Gain	Digital Gain	Total Gain
0x2010	1	1	1
0x2014	1.25	1	1.25
0x2018	1.5	1	1.5
0x201C	1.75	1	1.75
0x2020	2	1	2
0x2022	2.25	1	2.25
0x2024	2.5	1	2.5
0x2026	2.75	1	2.75
0x2028	3	1	3
0x202A	3.25	1	3.25
0x202C	3.5	1	3.5
0x202E	3.75	1	3.75
0x2030	4	1	4
0x2031	4.25	1	4.25
0x2032	4.5	1	4.5
0x2033	4.75	1	4.75
0x2034	5	1	5
0x2035	5.25	1	5.25
0x2036	5.5	1	5.5
0x2037	5.75	1	5.75
0x2038	6	1	6
0x2039	6.25	1	6.25
0x203A	6.5	1	6.5
0x203B	6.75	1	6.75
0x203C	7	1	7
0x203D	7.25	1	7.25
0x203E	7.5	1	7.5
0x203F	7.75	1	7.75
0x213F	7.75	1.03125	8
0x223F	7.75	1.0625	8.25
0x233F	7.75	1.09375	8.5
0x243F	7.75	1.125	8.75
0x253F	7.75	1.15625	9
0x263F	7.75	1.1875	9.25

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Gain

Table 17:	Recommended Gain Settings (continued)
-----------	---------------------------------------

Gain Codes R0x305E[15:0]	Analog Gain	Digital Gain	Total Gain
0x273F	7.75	1.21875	9.5
0x28BF	7.75	1.265625	9.75
0x29BF	7.75	1.296875	10
0x2ABF	7.75	1.328125	10.25
0x2BBF	7.75	1.359375	10.5
0x2CBF	7.75	1.390625	10.75
0x2DBF	7.75	1.421875	11
0x2EBF	7.75	1.453125	11.25
0x2FBF	7.75	1.484375	11.5
0x30BF	7.75	1.515625	11.75
0x31BF	7.75	1.546875	12
0x32BF	7.75	1.578125	12.25
0x33BF	7.75	1.609375	12.5
0x34BF	7.75	1.640625	12.75
0x35BF	7.75	1.671875	13
0x36BF	7.75	1.703125	13.25
0x37BF	7.75	1.734375	13.5
0x393F	7.75	1.78125	13.75
0x3A3F	7.75	1.8125	14
0x3B3F	7.75	1.84375	14.25
0x3C3F	7.75	1.875	14.5
0x3D3F	7.75	1.90625	14.75
0x3E3F	7.75	1.9375	15
0x3F3F	7.75	1.96875	15.25
0x403F	7.75	2	15.5
0x413F	7.75	2.03125	15.75
0x423F	7.75	2.0625	16
0x433F	7.75	2.09375	16.25
0x443F	7.75	2.125	16.5
0x453F	7.75	2.15625	16.75
0x463F	7.75	2.1875	17
0x473F	7.75	2.21875	17.25
0x48BF	7.75	2.265625	17.5
0x49BF	7.75	2.296875	17.75
0x4ABF	7.75	2.328125	18
0x4BBF	7.75	2.359375	18.25
0x4CBF	7.75	2.390625	18.5
0x4DBF	7.75	2.421875	18.75
0x4EBF	7.75	2.453125	19
0x4FBF	7.75	2.484375	19.25
0x50BF	7.75	2.515625	19.5
0x51BF	7.75	2.546875	19.75
0x52BF	7.75	2.578125	20
0x53BF	7.75	2.609375	20.25
0x54BF	7.75	2.640625	20.5

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Gain

Gain Codes R0x305E[15:0]	Analog Gain	Digital Gain	Total Gain
0x55BF	7.75	2.671875	20.75
0x56BF	7.75	2.703125	21
0x57BF	7.75	2.734375	21.25
0x593F	7.75	2.78125	21.5
0x5A3F	7.75	2.8125	21.75
0x5B3F	7.75	2.84375	22
0x5C3F	7.75	2.875	22.25
0x5D3F	7.75	2.90625	22.5
0x5E5F	7.75	2.9375	22.75
0x5F3F	7.75	2.96875	23
0x603F	7.75	3	23.25
0x613F	7.75	3.03125	23.5
0x623F	7.75	3.0625	23.75
0x633F	7.75	3.09375	24

Table 17: Recommended Gain Settings (continued)

Table 18: Reference of ISO-speed-based Gain Settings

ISO-speed*	Total Gain Value	Register 0x305E Value
100	1.3125x	0x2015
200	2.625x	0x2025
400	5.25x	0x2035
800	10.53x	0x2BBF
1,600	21.05x	0x573F
3,200	42.1x	0xAE3F

Note:

* ISO-speed calculations based on 5100K light source and "AP2" IR-cut filter.

Digital Gain

Digital gain provides both per-color and fine (sub 1x) gain. The analog and digital gains are multiplicative to give the total gain. Digital gain is set by setting bits R0x305E[15:7] to set global gain or by individually setting digital color gain R0x3056-C[15:7] where these 11 bits are designed in 3p6 format, that is, 3 MSB provide gain up to 7x in step of 1x while 6 LSB provide sub-1x gain with a step size of 1/64. This sub-1x gain provides the fine gain control for the sensor.

Total Gain

Maximum total gain is 7.75x (analog) and 7.98x (digital). The total gain equation can be formulated as:

$$Total \ gain = (2^{(Analog_coarse_gain-1)}) \times (16 + analog_fine_gain) / 16 \times (digital_gain / 64)$$
(EQ 15)

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Sensor Core Digital Data Path

Sensor Core Digital Data Path

Test Patterns

The AR1335HS supports a number of test patterns to facilitate system debug. Test patterns are enabled using test_pattern_mode (R0x0600–1). The test patterns are listed in Table 19.

Table 19: Test Patterns

test_pattern_mode	Description
0	Normal operation: no test pattern
1	Solid color
2	100% color bars
3	Fade-to-gray color bars
256	Walking 1s (10-bit)
257	Walking 1s (8-bit)

Test patterns 0–3 replace pixel data in the output image (the embedded data rows are still present). Test pattern 4 replaces all data in the output image (the embedded data rows are omitted and test pattern data replaces the pixel data).

For all of the test patterns, the AR1335HS registers must be set appropriately to control the frame rate and output timing. This includes:

- All clock divisors
- x_addr_start
- x_addr_end
- y_addr_start
- y_addr_end
- frame_length_lines
- line_length_pck
- x_output_size
- y_output_size

Effect of Data Path Processing on Test Patterns

Test patterns are introduced early in the pixel data path. As a result, they can be affected by pixel processing that occurs within the data path. This includes:

- Black pedestal adjustment
- Lens and color shading correction

These effects can be eliminated by the following register settings:

- R0x3044-5[10] = 0
- R0x30CA-B[0] = 1
- R0x30D4-5[15] = 0
- R0x31E0-1[0] = 0
- R0x301A–B[3] = 0 (enable writes to data pedestal)
- R0x301E–F = 0x0000 (set data pedestal to "0")
- R0x3780[15] = 0 (turn off lens/color shading correction)

Solid Color Test Pattern

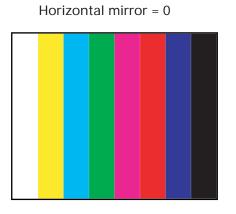
In this mode, all pixel data is replaced by fixed Bayer pattern test data. The intensity of each pixel is set by its associated test data register.

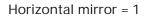
100% Color Bars Test Pattern

In this test pattern, shown in Figure 26 on page 48, all pixel data is replaced by a Bayer version of an 8-color, color-bar chart (white, yellow, cyan, green, magenta, red, blue, black). Each bar is 1/8 of the width of the pixel array (4208/8 = 526 pixels). The pattern repeats after 8 x 526 = 4208 pixels.

Each color component of each bar is set to either 0 (fully off) or 0x3FF (fully on for 10-bit data).

The pattern occupies the full height of the output image.


The image size is set by x_addr_start, x_addr_end, y_addr_start, y_addr_end and may be affected by the setting of x_output_size, y_output_size. The color-bar pattern is disconnected from the addressing of the pixel array, and will therefore always start on the first visible pixel, regardless of the value of x_addr_start. The number of colors that are visible in the output is dependent upon x_addr_end - x_addr_start and the setting of x_output_size: the width of each color bar is fixed at 526 pixels.


The effect of setting horizontal_mirror in conjunction with this test pattern is that the order in which the colors are generated is reversed: the black bar appears at the left side of the output image. Any pattern repeat occurs at the right side of the output image regardless of the setting of horizontal_mirror. The state of vertical_flip has no effect on this test pattern.

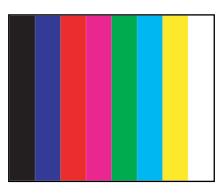

The effect of subsampling and scaling of this test pattern is undefined.

Figure 26: 100 Percent Color Bars Test Pattern

Fade-to-gray Color Bars Test Pattern

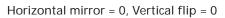
In this test pattern, shown in Figure 27 on page 49, all pixel data is replaced by a Bayer version of an 8-color, color-bar chart (white, yellow, cyan, green, magenta, red, blue, black). Each bar is 1/8 of the width of the pixel array (4208/8 = 526 pixels). The test pattern repeats after 4208 pixels.

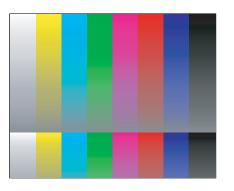
Each color bar fades vertically from zero or full intensity at the top of the image to 50 percent intensity (mid-gray) on the last TBD row of the pattern. Each color bar is divided into a left and a right half, in which the left half fades smoothly and the right half fades in quantized steps.

The speed at which each color fades is dependent on the sensor's data width and the height of the pixel array. We want half of the data range (from 100 or 0 to 50 percent) difference between the top and bottom of the pattern. Because of the Bayer pattern, each state must be held for two rows.

The rate-of-fade of the Bayer pattern is set so that there is at least one full pattern within a full-sized image for the sensor. Factors that affect this are the resolution of the ADC (10-bit) and the image height. For example, the AR1335HS fades the pixels by 2 LSB for each two rows. With 10-bit data, the pattern is 3120 pixels high and repeats after that, if the window is higher.

The image size is set by x_addr_start, x_addr_end, y_addr_start, y_addr_end and may be affected by the setting of x_output_size, y_output_size. The color-bar pattern starts at the first column in the image, regardless of the value of x_addr_start. The number of colors that are visible in the output is dependent upon x_addr_end – x_addr_start and the setting of x_output_size: the width of each color bar is fixed at 526 pixels.


The effect of setting horizontal_mirror or vertical_flip in conjunction with this test pattern is that the order in which the colors are generated is reversed: the black bar appears at the left side of the output image. Any pattern repeat occurs at the right side of the output image regardless of the setting of horizontal_mirror.


The effect of subsampling and scaling of this test pattern is undefined.

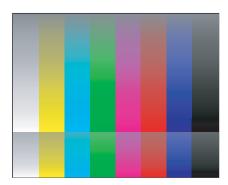
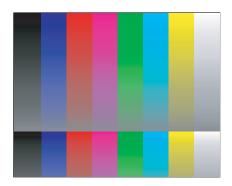
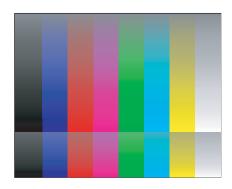
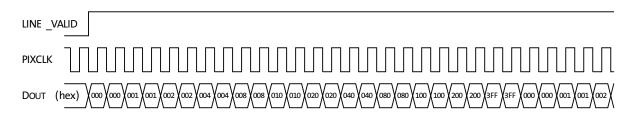

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Sensor Core Digital Data Path

Figure 27: Fade-to-Gray Color Bars Test Pattern




Horizontal mirror = 0, Vertical flip = 1

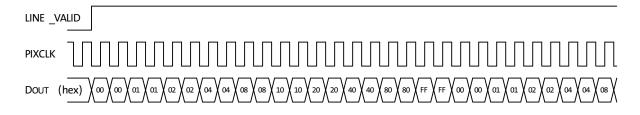
Horizontal mirror = 1, Vertical flip = 0


Horizontal mirror = 1, Vertical flip = 1

Walking 1s

When selected, a walking 1s pattern will be sent through the digital pipeline. The first value in each row is 0. Each value will be valid for 2 pixels.

Figure 28: Walking 1s 10-bit Pattern


Advance

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Sensor Core Digital Data Path

Figure 29: Walking 1s 8-bit Pattern

The walking 1s pattern was implemented to facilitate assembly testing of modules.

The walking 1 test pattern is not active during the blanking periods, hence the output would reset to a value of 0x0. When the active period starts again, the pattern would restart from the beginning. The behavior of this test pattern is the same between full resolution and subsampling modes. RAW10 and RAW8 walking 1 modes are enabled by different test pattern codes.

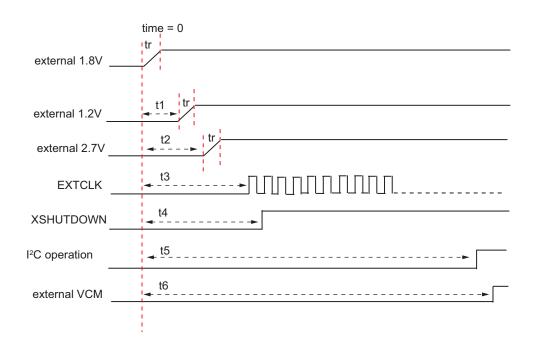
Pedestal

This block adds the value from R0x0008–9 or (data_pedestal_) to the incoming pixel value.

The data_pedestal register is read-only by default but can be made read/write by clearing the lock_reg bit in R0x301A–B.

The only way to disable the effect of the pedestal is to set it to 0.

Timing Specifications


By design, the 1.8V DVDD_IO is an always-on-power domain. The 1.2 V DVDD_PHY is used in MIPI and is also always-on without power switching. The rest of the digital power supplies (DVDD, DVDD_PLL) and the analog power supplies (VAA, VAAPIX, VDDIO_ANA, and DVDD_ANA) are switched power supplies. These power supplies are disconnected from the chip core by power switches in hard standby mode

Power-Up Sequence

The recommended power-up sequence for the AR1335HS is shown in Figure 30.

- 1. Set XSHUTDOWN LOW
- 2. Power up VDD_IO (1.8 V only), VDDIO_ANA (1.8 V only)
- 3. After 1-500 ms, power up VDD, VDD_ANA, VDD_PLL, VDD_PHY (1.2 V) and VAA, VAA_PIX (2.7 V) (any order).
- 4. Apply EXTCLK (can be applied anytime).
- 5. After 1-500 ms, set XSHUTDOWN HIGH
- 6. HOST configuration through I^2C (PLL, output, etc).
- 7. Set mode_select = 1 bit.
- 8. PLL internally enables and locks.
- 9. AR1335HS enters streaming mode.

Figure 30: Power-Up Sequence

Table 20:	Power-Up Sequence
-----------	-------------------

Timing	Minimum	Maximum
t1	1ms	-
t2	t1 + 1ms	_
t3	-	< t4
t4	t2 + 1ms	-
t5	t4 + 1ms	
tr	100µs	

A minimum ramping time of 100uS for "tr" is needed to minimize surge of supply current when powering up the 1.2V, 1.8V, and 2.7V external power supplies.

Power-Down Sequence

The recommended power-down sequence for the AR1335HS is shown in Figure 31. The available power supplies—VDD_IO, VDDIO_ANA, VDD, VDD_ANA, VDD_PLL, VDD_PHY, VAA, VAA_PIX—can be turned off at the same time or have the separation specified below.

- 1. Set software standby mode (mode_select = 0) register.
- 2. Wait till the end of the current frame.
- 3. Set XSHUTDOWN LOW.
- 4. Power off VDD, VDD_PLL, VDD_PHY, (1.2V) and VAA, VAA_PIX (2.7V) (any order).
- 5. Power off VDD_IO (1.8V).

Figure 31: Power-Down Sequence

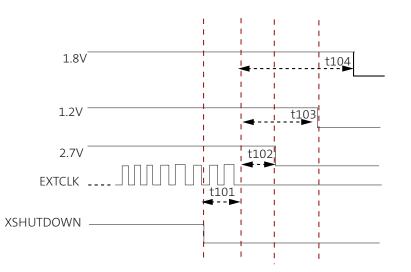
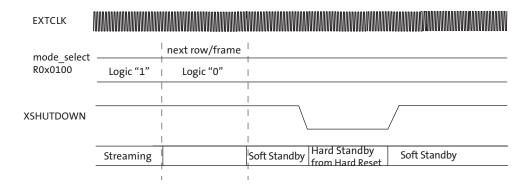


Table 21: Recommended Power-Down Timing

Timing	Minimum	Maximum
t101	10µs	10ms
t102	10ms	-
t103	10ms	-
t104	max(t102, t103) + 10ms	_



Hard Standby and Hard Reset

The hard standby state is reached by the assertion of the XSHUTDOWN pads. Register values are not retained by this action, and will be returned to their default values once hard reset is completed. The minimum power consumption is achieved by the hard standby state. The details of the sequence are described below and shown in Figure 32.

- 1. Disable streaming if output is active by setting mode_select = 0 (R0x0100).
- 2. The soft standby state is reached after the current row or frame, depending on configuration, has ended.
- 3. Assert XSHUTDOWN (active LOW) and de-assert XSHUTDOWN to reset the sensor.
- 4. The sensor remains in hard standby state if XSHUTDOWN remain in the logic "0" state.

Figure 32: Hard Standby and Hard Reset

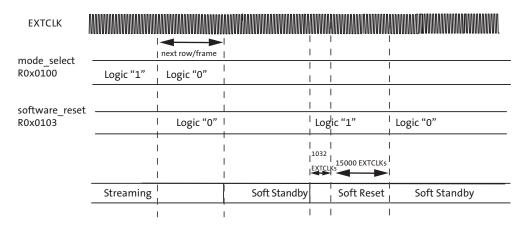
Soft Standby and Soft Reset

The AR1335HS can reduce power consumption by switching to the soft standby state when the output is not needed. Register values are retained in the soft standby state. Once this state is reached, soft reset can be enabled optionally to return all register values back to the default. The details of the sequence are described below and shown in Figure 33 on page 54.

Soft Standby

- 1. Disable streaming if output is active by setting mode_select = 0 (R0x0100).
- 2. The soft standby state is reached after the current row or frame, depending on configuration, has ended.
- 3. The soft standby with external clock disabled retains register values, uses minimum power, and allows faster power-up.

ON Semiconductor Confidential and Proprietary



AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Timing Specifications

Soft Reset

- 1. Follow the soft standby sequence list above.
- 2. Set software_reset = 1 (R0x0103) to start the internal initialization sequence.
- 3. After 15000 EXTCLKs, the internal initialization sequence is completed and the current state returns to soft standby automatically. All registers, including software_reset, returns to their default values.

Figure 33: Soft Standby and Soft Reset

Image Sensor Characteristics

Table 22: Image Sensor Characteristics

All specifications address operation at $T_j = 60^{\circ}C (\pm 3^{\circ}C)$, VAA = VAA_PIX = 2.7 V, VDD = VDD_ANA = VDD_PHY = 1.2 V, VDD_IO = VDDIO_ANA = 1.8 V. Unless otherwise specified, all tests are performed with ON Semiconductor-recommended settings in full resolution, max FPS mode at minimum recommended gain and resulting images are averaged and analyzed in Bayer format.

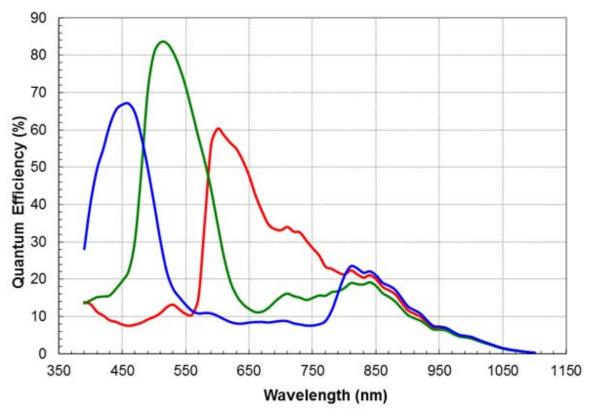
Item	Symbol	Min.	Тур.	Max.	Unit	Region	Measurement Method	Comments
Responsivity	S		4700		e ⁻ /lx.sec	Center	1.0	
Responsivity ratio	RG	0.54	0.61	0.68		Center	1.1	1x (minimum gain)
	BG	0.39	0.44	0.49				

Measurement Method

1.0 QE spectrum vs wavelength is measured using a monochromator. Responsivity is calculated from the green QE curve using a 5100K incident light spectrum filtered by a UV640 IR-cut filter. The incident light spectrum is then converted to lux by using the photopic conversion spectrum. Then the number of signal electrons generated at each wavelength, and the incident lux on the sensor plane at each wavelength are both integrated, and then divided, resulting in the responsivity value of electrons per lux*s.

1.1 Use a 3000K uniform Halogen illuminator with a CM500 IR-cut filter and a lens/ aperture to be within 3° of the designed CRA vs. image height. Then set the light level to achieve a Ga signal response of approximately 512 LSB, where Ga is the average Gr and Gb signal response. Read out the B, Gr, Gb, and R signal outputs from the center 200x200 window after subtracting the mean black-level correction offsets and calculate ratios as per below:

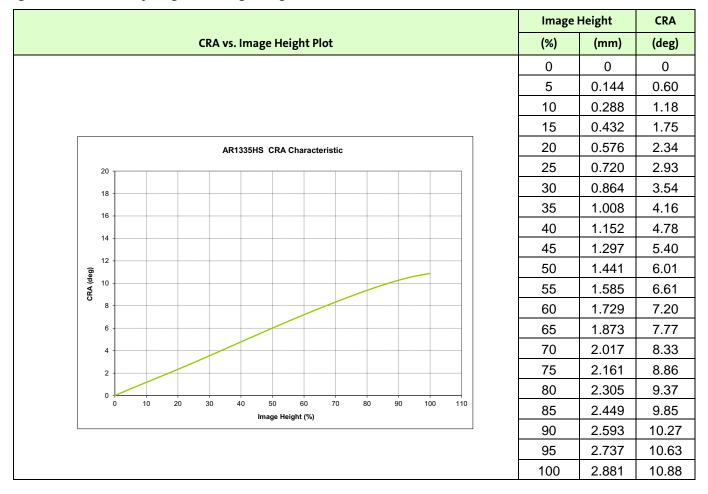
$$Ga = \frac{Gr + Gb}{2}$$
, and
 $BG = \frac{B}{Ga}$, and
 $RG = \frac{R}{Ga}$


AR1335HS/D Rev. 0, 4/16 EN

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Image Sensor Characteristics

Spectral Characteristics

Figure 34: Quantum Efficiency vs. Wavelength


Note: QE is for Bare Die version.

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Image Sensor Characteristics

AR1335HS Chief Ray Angle vs. Image Height

Figure 35: Chief Ray Angle vs. Image Height

Table 23: Array Dimensions

Pixel Size	Array Siz	e (pixels)	Array Si	ze (mm)
	X _{max}	4208	X _{max}	4.65
1.1µm	Y _{max}	3120	Y _{max}	3.45
			Diagonal	5.79

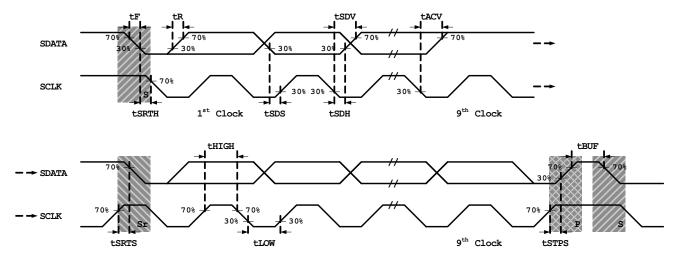
Read the Sensor CRA

Follow the steps below to obtain the CRA value of the image sensor:

- 1. Set the register bit field R0x301A[5] = 1.
- 2. Read the register bit fields R0x31FE [9:7].
- 3. Determine the CRA value according to Table 24.

Table 24: CRA Value

Binary Value of R0x31FE[9:7]	CRA Value
0x2	11



Electrical Characteristics

Two-Wire Serial Register Interface

The electrical characteristics of the two-wire serial register interface (SCLK, SDATA) are shown in Figure 36 and Table 25 on page 59. Table 26 on page 60 shows the timing specification for the two-wire serial interface.

Figure 36: Two-Wire Serial Bus Timing Parameters

Note: Read sequence: For an 8-bit READ, read waveforms start after WRITE command and register address are issued.

Table.25:

5: Two-Wire Serial Register Interface Electrical Characteristics

f_{EXTCLK} = 25 MHz; VAA= 2.7V; VAA_PIX = 2.7V; VDD_IO = 1.8V; VDD (digital core) = 1.2V; VDD_PHY = 1.2V; Output load = 68.5pF; TJ = 60°C

				Fast N	Node	Fast	Mode I	Plus			
Symbol	Parameter	Condition	Min	Тур	Max	Min	Тур	Max	Unit		
SDATA											
VIL	Input LOW voltage	-	-0.3	—	0x3 x VDD_IO	-0.3	-	0x3 x VDD_IO	V		
Vih	Input HIGH voltage	-	0.7 x Vdd_IO	-	VDD_IO + 0.3	0.7 x VDD_IO	-	VDD_IO + 0.3	V		
ΙιL	Input leakage current	No pull up resistor; VIN = VDD_IO or DGND	10	_	14	10	-	14	μΑ		
Vol	Output LOW voltage	At specified 2mA	0.11	_	0.3	0.11	_	0.3	V		
Iol	Output LOW current	At specified VoL 0.4V	3	_	N/A	20	-	N/A	mA		
Cin	Input pad capacitance	-	2.4	-	2.62	2.4	-	2.62	рF		
CLOAD	Load capacitance	-	-	_	N/A	-	_	N/A	рF		
SCLK											
VIL	Input LOW voltage	-	-0.3	_	0x3 x VDD_IO	-	_	-	V		
Vih	Input HIGH voltage	-	0.7 x Vdd_IO	-	VDD_IO + 0.3	-	-	-	V		
ΙιL	Input leakage current	No pull up resistor; VIN = VDD_IO or DGND	10	_	14	-	-	-	μΑ		
Vol	Output LOW voltage	At specified 2mA	0.11	-	0.3	_	-	-	V		
Iol	Output LOW current	At specified VoL 0.1V	3	-	N/A	-	-	-	mA		
Cin	Input pad capacitance	-	2.4	-	2.63	_	-	-	рF		
CLOAD	Load capacitance	_	-	-	N/A	_	-	-	рF		

Table 26: Two-Wire Serial Interface Timing Specifications

		Fast	Fast Mode		Fast Mode Plus	
Symbol	Definition	Min	Max	Min	Max	Unit
fsclk	SCLK Frequency	0	400	0	1000	KHz
tніgн	Sclk High Period	0.6	-	0.26	-	μs
tlow	SCLK Low Period	1.3	-	0.5	-	μs
tsrts	START Setup Time	0.6	-	0.26	-	μs
tsrth	START Hold Time	0.6	-	0.26	-	μs
tsds	Data Setup Time	100	-	50	-	ns
tsdh	Data Hold Time	0	-	0	-	μs
tsdv	Data Valid Time	-	0.9	-	0.45	μs
tadv	Data Valid Acknowledge Time		0.9	-	0.45	μs
tstps	Stop Setup Time	0.6	-	0.26	-	μs
tbuf	Bus Free Time between STOP and START	1.3	-	0.5	-	μs
tr	SCLK and SDATA Rise Time	20	300	-	120	ns
tf	SCLK and SDATA Fall Time	20	300	20	120	ns

EXTCLK

The electrical characteristics of the EXTCLK input are shown in Table 27. The EXTCLK input supports an AC-coupled sine-wave input clock or a DC-coupled square-wave input clock.

If EXTCLK is AC-coupled to the AR1335HS and the clock is stopped, the EXTCLK input to the AR1335HS must be driven to ground or to VDD_IO. Failure to do this will result in excessive current consumption within the EXTCLK input receiver.

Table 27: Electrical Characteristics (EXTCLK)

f_{EXTCLK} = 25 MHz; VAA = 2.7V; VAA_PIX = 2.7V; VDD_IO = 1.8V; VDD (digital core) = 1.2V; VDD_PHY = 1.2V; Output load = 68.5pF; TJ = 60°C

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{extclk}	Input clock frequency	PLL enabled	6	_	48	MHz
tr	Input clock rise slew rate	CLOAD<20pF	-	2.883	-	ns
tF	Input clock fall slew rate	CLOAD<20pF	-	2.687	-	ns
VIN_AC	Input clock minimum voltage swing (AC coupled)	-	0.5	_	-	V (p-p)
Vin_dc	Input clock maximum voltage swing (DC coupled)	-	-	_	VDD_IO + 0.5	V
fclkmax (ac)	Input clock signaling frequency (low amplitude)	VIN = VIN_AC (MIN)	-	_	25	MHz
fclkmax((dc)	Input clock signaling frequency (full amplitude)	VIN = VDD_IO	-	_	48	MHz
	Clock duty cycle	-	45	50	55	%
t _{JITTER}	Input clock jitter	cycle-to-cycle	-	545	600	ps
t _{ьоск}	PLL VCO lock time	-	-	0.2	1	ms
CIN	Input pad capacitance	_	-	6	-	pF
Іін	Input HIGH leakage current	_	0	_	10	μA
VIH	Input HIGH voltage	-	0.7 x VDD_IO		VDD_IO + 0.5	V
VIL	Input LOW voltage	-	-0.5		0.3 x VDD_IO	V

Serial Pixel Data Interface

The electrical characteristics of the serial pixel data interface are shown in Table 28.

To operate the serial pixel data interface within the electrical limits of the CSI-2 and MIPI specifications, VDD_IO (I/O digital voltage) is restricted to operate in the range 1.7–1.9V.

Table 28:	Electrical Characteristics (Serial MIPI Pixel Data Interface)
-----------	---

Symbol	Parameter	Min	Тур	Max	Unit
Vod	High speed transmit differential voltage	140	-	270	mV
Vсмтх	High speed transmit static common-mode voltage	150	_	250	mV
Δνςμτχ	VCMTX mismatch when output is Differential-1 or Differential-0	<5	-	-	mV
ΔVod	Vod mismatch when output is Differential-1 or Differential-0	<10	_	_	mV
Zos	Single ended output impedance	40	-	62.5	Ω
ΔZos	Single ended output impedance mismatch	<10	_	_	%
ΔVcmtx(l,f)	Common-level variation between 50-450 MHz	<25	-	-	mV
tr	Rise time (20-80%)	150	-	0.3*UI	ps
tF	Fall time (20-80%)	150	-	0.3*UI	ps
Vol	Output LOW level	-50	-	50	mV
Vон	Output HIGH level	1.1	-	1.3	V
ZOLP	Output impedance of low power parameter	110	-	-	Ω
Trlp	15-85% rise time	-	-	25	ns
TFLP	15-85% fall time	-	-	25	ns
$\Delta V / \Delta dtsr$	Slew rate (CLOAD = 0-70pF)	30	_	_	mV/ns

MIPI Specification Reference

- The sensor design and this documentation is based on the following MIPI specifications:
- MIPI Alliance Standard for CSI-2 version 1.0
- MIPI Alliance Standard for D-PHY version 1.0

Control Interface

The electrical characteristics of the control interface (XSHUTDOWN, TEST, GPI0, GPI1, GPI2, and GPI3) are shown in Table 29.

Table 29: DC Electrical Characteristics (Control Interface)

 f_{EXTCLK} = 25 MHz; VAA = 2.7V; VAA_PIX = 2.7V; VDD_IO = 1.8V; VDD (DIGITAL CORE) = 1.2V; VDD_PHY = 1.2V; Output load = 68.5pF; TJ = 60°C

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vih	Input HIGH voltage		0.7 x VDD_IO	-	VDD_IO + 0.5	V
VIL	Input LOW voltage		-0.5	_	0.3 x VDD_IO	V
lin	Input leakage current	No pull-up resistor; Vin = VDD_IO or DGND	-	-	10	μA
Cin	Input pad capacitance		_	6	_	pF

Operating Voltages

VAA and VAA_PIX must be at the same potential for correct operation of the AR1335HS.

Table 30: DC Electrical Definitions and Characteristics

f_{EXTCLK} = 25 MHz; VAA= 2.7V; VAA_PIX = 2.7V; VDD_IO = 1.8V; VDD (digital core) = 1.2V; VDD_PHY = 1.2V; Output load = 68.5pF; TJ = 60°C

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vdd_IO	I/O digital voltage	-	1.7	1.8	1.9	V
Vdd	Digital voltage	-	1.14	1.2	1.3	V
Vdd_PHY	PHY digital voltage	-	1.14	1.2	1.3	V
VAA	Analog voltage	-	2.6	2.7	2.9	V
VAA_PIX	Pixel supply voltage	-	2.6	2.7	2.9	V
Operating Current		·		•		_
IDD_IO	I/O digital current		_	26	26	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	13M full mode (4208x3120), 30fps	_	118	130	1
Iaa/Iaa_PIX	Analog/Pixel current		_	30	30	-
Idd_IO	I/O digital current		_	26	26	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	13M full mode (4208x3120), 24fps	_	102	113	1
Iaa/Iaa_PIX	Analog/Pixel current		_	30	30	1
IDD_IO	I/O digital current		-	26	26	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	4K UHD full mode (3840 x 2160), 30fps	-	90	100	-
IAA/IAA_PIX	Analog/Pixel current		_	28	28	
IDD_IO	I/O digital current		-	26	26	mA
IDD/IDD_PHY/IDD_ANA	PHY/digital current	4K Cinema full mode (4096 x 2160), 30fps	-	93	103	_
IAA/IAA_PIX	Analog/Pixel current		-	28	28	
IDD_IO	I/O digital current		-	8	8	mA
IDD/IDD_PHY/IDD_ANA	PHY/digital current	1080p (1920x1080), crop+bin2+scaling, 30fps	_	86	94	
IAA/IAA_PIX	Analog/Pixel current	50153	-	16	16	
IDD_IO	I/O digital current		-	8	8	mA
IDD/IDD_PHY/IDD_ANA	PHY/digital current	1080p LP (1920x1080), crop+bin2+scaling, 30fps	_	65	71	1
IAA/IAA_PIX	Analog/Pixel current	50105	_	16	16	1
IDD_IO	I/O digital current	722 (1222 722)	_	6	6	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	720p (1280x720), crop+skip2+scaling, 30fps	-	75	83	1
IAA/IAA_PIX	Analog/Pixel current	50195	_	15	15	
IDD_IO	I/O digital current	1000r (1000.1000)	_	18	18	mA
IDD/IDD_PHY/IDD_ANA	PHY/digital current	1080p (1920x1080), crop+bin2+scaling, 60fps	_	93	103	
IAA/IAA_PIX	Analog/Pixel current		_	24	24	
IDD_IO	I/O digital current	1000- (D(1020-1000)	_	18	18	mA
IDD/IDD_PHY/IDD_ANA	PHY/digital current	1080p LP(1920x1080), crop+bin2+scaling, 60fps	_	70	77	1
IAA/IAA_PIX	Analog/Pixel current		_	24	24	7
IDD_IO	I/O digital current	720=(1280,720)	_	12	12	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	720p(1280x720), crop+skip2+scaling, 60fps	-	82	92	
IAA/IAA_PIX	Analog/Pixel current] - · · r -	-	20	20	

Table 30:DC Electrical Definitions and Characteristics (continued)

f_{EXTCLK} = 25 MHz; VAA= 2.7V; VAA_PIX = 2.7V; VDD_IO = 1.8V; VDD (digital core) = 1.2V; VDD_PHY = 1.2V; Output load = 68.5pF; TJ = 60°C

Symbol	Parameter	Condition	Min	Тур	Max	Unit
IDD_IO	I/O digital current		-	12	12	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	3M (2000x1500), crop+skip2+scaling	-	99	107	
IAA/IAA_PIX	Analog/Pixel current		-	20	20	
IDD_IO	I/O digital current		-	12	12	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	3M LP(2000x1500), crop+skip2+scaling	-	79	86	
IAA/IAA_PIX	Analog/Pixel current		-	20	20	
IDD_IO	I/O digital current		-	17	17	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	VGA (640x480), crop+skip4+scaling, 120fps	-	82	91	
IAA/IAA_PIX	Analog/Pixel current		-	23	23	
IDD_IO	I/O digital current		-	28	28	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	720p (1280x720), crop+skip2+scaling, 120fps	-	116	128	1
IAA/IAA_PIX	Analog/Pixel current	120103	-	25	25	
IDD_IO	I/O digital current		-	17	17	mA
Idd/Idd_PHY/Idd_ANA	PHY/digital current	QVGA (320x240), bin4skip4 240fps	-	60	66	
IAA/IAA_PIX	Analog/Pixel current		-	23	23	
STANDBY current		·		•		•
IDD_IO	I/O digital current		_	_	13	μΑ
IDD/IDD_PHY/IDD_ANA	PHY/digital current	XSHUTDOWN signal low (EXTCLK on)	_	_	27	
IAA/IAA_PIX	Analog/Pixel current		_	-	10	
IDD_IO	I/O digital current		_	-	13	μΑ
Idd/Idd_PHY/Idd_ANA	PHY/digital current	XSHUTDOWN signal low (EXTCLK off)	_	-	27	
IAA/IAA_PIX	Analog/Pixel current		_	-	10	
IDD_IO	I/O digital current		_	_	0.5	mA
IDD/IDD_PHY/IDD_ANA	PHY/digital current	STANDBY current when asserting R0x0100 = 0 (EXTCLK on)	_	_	14	
IAA/IAA_PIX	Analog/Pixel current		_	_	0.5	1
IDD_IO	I/O digital current		_	_	0.5	mA
IDD/IDD_PHY/IDD_ANA	PHY/digital current	STANDBY current when asserting R0x0100 = 0 (EXTCLK off)	_	-	5	1
IAA/IAA_PIX	Analog/Pixel current			_	0.5	

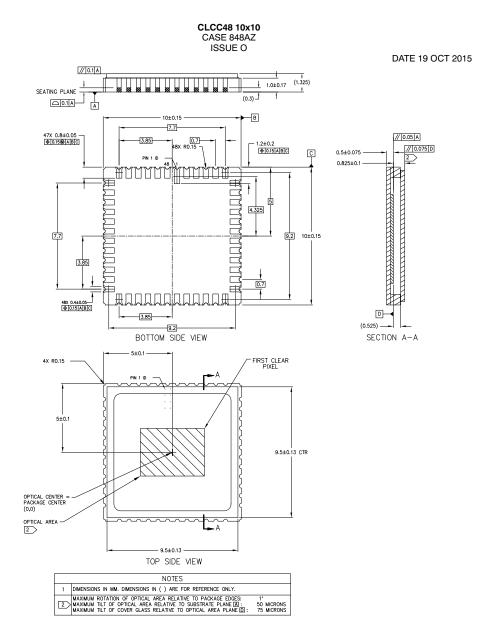
This table specifies the typical measured currents with AR1335HS sensor operating under typical light conditions. The per supply currents are measured with the typical and maximum supply voltages applied to the sensor.

Absolute Maximum Ratings

Caution Stresses greater than those listed below may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

> This is a stress rating only, and functional operation of the device at these or any other conditions above the nominal operating specification is not implied.

Table 31:Absolute Maximum Ratings


Parameter	Min	Max	Unit
VDD & VDD_PHY (1.2V domain)	-0.3	1.8	V
VDD_IO (1.8V domain)	-0.3	2.7	V
VAA & VAA_PIX (2.7V domain)	-0.3	3.5	V
Operating temperature (at junction)	-30	70	°C
Storage temperature	-40	85	°C

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Package Dimensions

Package Dimensions

Figure 37: Package Outline (Case 848AZ)

Package Mechanical Drawing

Figure	38:	Pinout
--------	-----	--------

		DGND	DV _{DO} PLL	DVDD	EXTCLK	V _{DD} _IO	DGND	GPI00	GPIO1	GPI2	GP13	TEST	DGND		
		6	5	4	3	2	1	48	47	46	45	44	43	1	
DV _{DO-} PHY	7											ι.		42	DVDO
DATA_P	8	89 10												41	DGND
DATA_N	9													40	S _{DATA}
DATA2_P	10													39	Salk
DATA2_N	11													38	DVpp
CLK_P	12													37	DGND
CLK_N	13	<u>.</u>												36	V _{DD} _IO
DATA3_P	14	6												35	KSHUTDOW
DATA3_N	15													34	AGND
DATA4_P	16	22												33	V _{AA} PIX
DATA4_N	17	2												32	VAA
V _{DD} SLVS	18			1.11										31	ATEST1
1000		19	20	21	22	23	24	25	26	7	28	29	30		
		DGND	AGND	V _{AA} _PIX	VAA	DV _{DO-} ANA	V _{DD} IO_ANA	AGND	AGND	AGND	V _{DD} IO_ANA	DV _{DO-} ANA	AGND		

TOP SIDE VIEW

AR1335HS: 1/3.2-Inch 13Mp CMOS Digital Image Sensor Package Mechanical Drawing

ON Semiconductor®

2

© Semiconductor Components Industries, LLC, 2016

A-Pix is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/</u> Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of thers. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design